• Title/Summary/Keyword: Intrinsic Fluorescence

Search Result 47, Processing Time 0.028 seconds

Effects of Methanol on the Catalytic Properties of Porcine Pancreatic Lipase

  • PARK HYUN;LEE KI SEOG;CHI YOUNG MIN;JEONG SEUNG WEON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.296-301
    • /
    • 2005
  • The effect of aqueous methanol on the catalytic properties of porcine pancreatic lipase has been investigated. The k$_{CAT}$, values for the hydrolysis of N$^{alpha}$-benzyloxycarbonyl-L­lysine p-nitrophenyl ester at 0$^{circ}$C increased in a linear manner with increasing methanol concentration. However, the K$_{M}$ values were not influenced at methanol concentrations lower than $30\%$ and then began to increase at higher concentrations in an exponential fashion. Based on product analysis, the increase in k$_{CAT}$, with increasing methanol concentration can be accounted for by nucleophilic competition of methanol for the acyl enzyme intermediate, indicating that the rate-limiting step of the porcine pancreatic lipase-catalyzed reaction is deacylation under current experimental conditions. The exponential increase in K$_{M}$ at methanol concentrations higher than $30\%$ is attributed to the hydrophobic partitioning effect on substrate binding. There was no loss of lipase activity over a 4 h period in $60\%$ methanol concentration at pH$^{circ}$ 5.5 and 0$^{circ}$C. By monitoring the intrinsic fluorescence and absorbance, no evidence for structural changes by methanol was observed.

In Vitro Characterization of Protein Kinase CKII β Mutants Defective in β-β Dimerization

  • Kim, Tae-Hyun;Lee, Jae-Yong;Kang, Beom Sik;Bae, Young-Seuk
    • Molecules and Cells
    • /
    • v.19 no.1
    • /
    • pp.124-130
    • /
    • 2005
  • Protein kinase CKII is composed of two catalytic (${\alpha}$ or ${\alpha}^{\prime}$) subunits and two regulatory (${\beta}$) subunits. The ${\beta}$ subunit mediates tetramer formation through ${\beta}-{\beta}$ homodimerization and ${\alpha}-{\beta}$ heterodimerization. In a previous study R26 and R75, point mutants of $CKII{\beta}$ defective in ${\beta}-{\beta}$ dimerization, were isolated. In the present work we characterized these $CKII{\beta}$ mutants in vitro. Purified R26 and R75 bound to $CKII{\alpha}$ but were defective in binding to $CKII{\beta}$. R75 stimulated the catalytic activity of CKII whereas R26 gave little stimulation, and poly-L-lysine increased the stimulation of catalytic activity by R26 or R75. Circular dichroism and intrinsic fluorescence data pointed to different conformational changes in R26 and R75. Molecular modeling of these mutants provides an explanation of the difference in their ability to interact with $CKII{\beta}$ and to activate $CKII{\alpha}$.

Isolation and Characterization of $\beta$-Galactoside Specific Lectin from Korean Mistletoe (Viscum album var. coloratum with Lactose-BSA-Sepharose 4B and Changes of Lectin Conformation

  • Park, Won-Bong;Ju, Yeun-Jin;Han, Seon-Kyu
    • Archives of Pharmacal Research
    • /
    • v.21 no.4
    • /
    • pp.429-435
    • /
    • 1998
  • Lectins and its A- and B-chains from Korean mistletoe (Viscum album var. coloratum) were isolated by affinity chromatography on the Sepharose 4B modified by lactose-BSA conjugate synthesized by reductive amination of ligand (lactose) to .epsilon.-amino groups of lysine residues of spacer (BSA) after reduction by $NaCNBH_3$. The lactose-BSA conjugate was coupled to Sepharose 4B activated by cyanogen bromide. The molecular weight determined by SDS-PAGE were a 31 kD of A-chain and a 35kD of B-chain. Amino acid analysis and N-terminal sequencing were performed. The effects of pH, temperature and guanidine chloride on the conformation of the lectin were investigated by measuring its intrinsic fluorescence and compared with its hemagglutinating activities. Blue shift was detected on the acidic pH and there was a close relationship between activities and conformation of the lectin. Under denaturing conditions, the tryptophan emission profile of lectin showed typical denaturaiional red shift which also correspond to the conformations and activity of lectin.

  • PDF

Expression, Refolding, and Characterization of the Proteolytic Domain of Human Bone Morphogenetic Protein 1 (뼈형성 단백질(Bone Morphogenetic Protein 1)의 단백질 분해 부위의 발현 및 특성 연구)

  • ;Daihung Do
    • Journal of Life Science
    • /
    • v.10 no.2
    • /
    • pp.218-227
    • /
    • 2000
  • Bone morphogenetic protein 1 (BMP-1) is part of a complex capable of inducing ectopic bone formation in mammals. Studies on TGF-β1 processing and Drosophila dorsal-ventral patterning have focused attention on BMP-1 as important in mediating the biological activity of this bone inducing complex. Herein, the bacterial expression, refolding, purification, and initial characterization of the BMP-1 proteolytic domain (BPD) are described. A semi-quantitative fluorescence-based thin layer chromatography assay was developed to assist in rapidly screening for optimal renaturation conditions. According to a preliminary screen for optimal conditions for the refolding of BPD , a detectable proteolytic activity against a high turnover substrate for astacin, a homologous protease from crayfish was observed. The conditions identified have allowed the expression of sufficient amounts of BPD for the characterization of the protein. Its proteolytic activity exhibits the same cleavage specificity as astacin against seven substrates that were previously synthesized for studying astacin. Furthermore, this activity is inhibited by the metal chelator 1,10-phenanthroline but not by its analogue 1,7-phenanthroline. The collagenase inhibitor Pro-Leu-Gly hydroxamate was found to inhibit both astacin and BPD activity. The results presented in this paper argue that BMP-1 does in fact possess an intrinsic proteolytic activity.

  • PDF

Identification of an Essential Tryptophan Residue Residue in Alliinase from Garlic (Allium sativum) by Chemical Modification

  • Jin, Yeong Nam;Choe, Yong Hun;Yang, Cheol Hak
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.68-76
    • /
    • 2001
  • We have employed chemical modification to identify amino acids essential for the catalytic activity of alliinase (EC 4.4.1.4) from garlic (Allium sativum). Alliinase degrades S-alkyl-L cysteine sulfoxides, causing the characteristic odor of garlic. The activity of alliinase was rapidly and completely inactivated by N-bromosuccinimide(NBS) and slightly decreased by succinic anhydride and N-acetylimidazole. These results indicate that tryptophanyl, lysyl, and tyrosyl residues play an important role in enzyme catalysis. The reaction of alliinase with NBA yielded a characteristic decrease in both the absorbance at 280 nm and the intrinsic fluorescence at 332 nm with increasing reagent concentration of NBS, consistent with the oxidation of tryptophan residues. Kinetic analysis, fluorometric titration of tryptophans and correlation to residual alliinase activity showed that modification of only one residue present on alliinase led to complete inhibition of alliinase activity. To identify this essential tryptophan residue, we employed chemical modification by NBS in the presence and absence of the protecting substrate analogue, S-ethyl-L-cysteine (SEC) and N-terminal sequence analysis of peptide fragment isolated by reverse phase-HPLC. A fragment containing residues 179-188 was isolated. We conclude that Trp182 is essential for alliinase activity.

Processing Characteristics of Freeze-Dried Pork Powder for Meat Emulsion Gel

  • Lee, Seonmin;Choi, Yun-Sang;Jo, Kyung;Jeong, Hyun Gyung;Yong, Hae In;Kim, Tae-Kyung;Jung, Samooel
    • Food Science of Animal Resources
    • /
    • v.41 no.6
    • /
    • pp.997-1011
    • /
    • 2021
  • The processing characteristics of freeze-dried pork powder as raw meat for comminuted meat products were compared with those of freeze-thawed pork. The tertiary structural properties, oxidation, and solubility of proteins in the freeze-dried pork powder were investigated. In addition, the properties of the emulsion gels manufactured with freeze-dried pork powder (GFD) and freeze-thawed pork (GFT) at 1.5% and 2.0% NaCl were evaluated. The surface hydrophobicity and intrinsic tryptophan fluorescence intensity of myofibrillar proteins between the freeze-dried pork powder and freeze-thawed pork were similar. However, freeze-dried pork powder had higher carbonyl compounds and lower solubility of sarcoplasmic and myofibrillar proteins than freeze-thawed pork (p<0.05). GFD had higher cooking loss than GFT in 2.0% NaCl, and lower hardness and a* value of GFD were observed regardless of NaCl level (p<0.05). Moreover, GFD had higher malondialdehyde content than GFT at the two NaCl concentrations (p<0.05). Therefore, our study demonstrated that freeze-dried pork powder has lower functional properties than freeze-thawed pork as raw meat for comminuted meat products.

Purification and Fluorometric Analysis of Leucine-Responsive Regulatory Protein from Escherichia coli (대장균 Leucine-Responsive Regulatory Protein의 정제 및 형광분광학적 특성 분석)

  • Lee, Chan-Yong;Kim, Sung-Chul;Seo, Cho-Hee
    • Korean Journal of Microbiology
    • /
    • v.46 no.1
    • /
    • pp.104-108
    • /
    • 2010
  • We describe the construction of derivatives of wild type and mutant lrp genes that encode 6XHis-tag Lrps. These derivatives of wild type and mutant Lrp could be useful for in vitro studies including Lrp conformational changes. We show that 6XHis-tag Lrp wild type and 6XHis-tag Lrp R145W bind with similar patterns in vitro to 21 bp duplex DNA containing the consensus sequences of Lrp sites of upstream of the ilvIH operon. In addition, we report here the 6XHis-tag Lrp R145W is useful to investigate the conformational changes of Lrp in solution by using its own intrinsic fluorescence characteristics.

Functionality Changes of Rapeseed Protein upon Proteolysis (유채단백질의 Proteolysis에 의한 기능성 변화)

  • Kim, Chung-Hee;Kim, Hyo-Sun;Lee, Jang-Soon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.5
    • /
    • pp.519-524
    • /
    • 1992
  • purified rapeseed(Brassica napus var. Youngsan) protein was hydrolyzed by pronase. The hyrolysate protein was investigated for the some physicochemical and functional properties. UV and intrinsic fluorescence spectra of the hydrolysate showed the maximum absorption at 274nm and 360nm respectively. Intensity of yellow color decreased in the process of hydrolysis and the surface hydrophobicity decreased up to fourfold. The main bands of hydrolysate by sodium dodecyl sulfate-polyacrylamide gel electrophoresis(SDS-PAGE) were observed at 14,000 to 12,000 dalton molecular weight. Solubilities of hydrolyzed protein increased by 10~15% compared to those of unhydrolyzed protein at acidic pH. In the hydrolysate, while absorption of both water and oil, foam expansion and emulsion stability were increased, absolute viscosity, heat coagulation, calcium coagulation, foam stability and emulsion activity were decreased.

  • PDF

Characterization and bacterial anti-adherent effect on modified PMMA denture acrylic resin containing platinum nanoparticles

  • Nam, Ki-Young
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.3
    • /
    • pp.207-214
    • /
    • 2014
  • PURPOSE. This study characterized the synthesis of a modified PMMA (Polymethyl methacrylate) denture acrylic loading platinum nanoparticles (PtN) and assessed its bacterial inhibitory efficacy to produce novel antimicrobial denture base material. MATERIALS AND METHODS. Polymerized PMMA denture acrylic disc ($20mm{\times}2mm$) specimens containing 0 (control), 10, 50, 100 and 200 mg/L of PtN were fabricated respectively. The obtained platinum-PMMA nanocomposite (PtNC) was characterized by TEM (transmission electron microscopy), SEM/EDX (scanning electron microscope/energy dispersive X-ray spectroscopy), thermogravimetric and atomic absorption spectrophotometer analysis. In antimicrobial assay, specimens were placed on the cell culture plate, and $100{\mu}L$ of microbial suspensions of S. mutans (Streptococcus mutans) and S. sobrinus (Streptococcus sobrinus) were inoculated then incubated at $37^{\circ}C$ for 24 hours. The bacterial attachment was tested by FACS (fluorescence-activated cell sorting) analysis after staining with fluorescent probe. RESULTS. PtN were successfully loaded and uniformly immobilized into PMMA denture acrylic with a proper thermal stability and similar surface morphology as compared to control. PtNC expressed significant bacterial anti-adherent effect rather than bactericidal effect above 50 mg/L PtN loaded when compared to pristine PMMA (P=.01) with no or extremely small amounts of Pt ion eluted. CONCLUSION. This is the first report on the synthesis and its antibacterial activity of Pt-PMMA nanocomposite. PMMA denture acrylic loading PtN could be a possible intrinsic antimicrobial denture material with proper mechanical characteristics, meeting those specified for denture bases. For clinical application, future studies including biocompatibility, color stability and warranting the long-term effect were still required.

Acid and Chemical Induced Conformational Changes of Ervatamin B. Presence of Partially Structured Multiple Intermediates

  • Sundd, Monica;Kundu, Suman;Jagannadham, Medicherla V.
    • BMB Reports
    • /
    • v.35 no.2
    • /
    • pp.143-154
    • /
    • 2002
  • The structural and functional aspects of ervatamin B were studied in solution. Ervatamin B belongs to the $\alpha+\beta$ class of proteins. The intrinsic fluorescence emission maximum of the enzyme was at 350 nm under neutral conditions, and at 355 nm under denaturing conditions. Between pH 1.0-2.5 the enzyme exists in a partially unfolded state with minimum or no tertiary structure, and no proteolytic activity. At still lower pH, the enzyme regains substantial secondary structure, which is predominantly $\beta$-sheet conformation and shows a strong binding to 8-anilino-1-napthalene-sulfonic acid (ANS). In the presence of salt, the enzyme attains a similar state directly from the native state. Under neutral conditions, the enzyme was stable in urea, while the guanidine hydrochloride (GuHCl) induced equilibrium unfolding was cooperative. The GuHCl induced unfolding transition curves at pH 3.0 and 4.0 were non-coincidental, indicating the presence of intermediates in the unfolding pathway. This was substantiated by strong ANS binding that was observed at low concentrations of GuHCl at both pH 3.0 and 4.0. The urea induced transition curves at pH 3.0 were, however, coincidental, but non-cooperative. This indicates that the different structural units of the enzyme unfold in steps through intermediates. This observation is further supported by two emission maxima in ANS binding assay during urea denaturation. Hence, denaturant induced equilibrium unfolding pathway of ervatamin B, which differs from the acid induced unfolding pathway, is not a simple two-state transition but involves intermediates which probably accumulate at different stages of protein folding and hence adds a new dimension to the unfolding pathway of plant proteases of the papain superfamily.