Effects of Methanol on the Catalytic Properties of Porcine Pancreatic Lipase

  • PARK HYUN (Korea Polar Research institute, Korea Ocean Research and Development Institute) ;
  • LEE KI SEOG (Division of Biotechnology and Genetic Engineering, Korea University) ;
  • CHI YOUNG MIN (Division of Biotechnology and Genetic Engineering, Korea University) ;
  • JEONG SEUNG WEON (Korea Food Research institute)
  • 발행 : 2005.04.01

초록

The effect of aqueous methanol on the catalytic properties of porcine pancreatic lipase has been investigated. The k$_{CAT}$, values for the hydrolysis of N$^{alpha}$-benzyloxycarbonyl-L­lysine p-nitrophenyl ester at 0$^{circ}$C increased in a linear manner with increasing methanol concentration. However, the K$_{M}$ values were not influenced at methanol concentrations lower than $30\%$ and then began to increase at higher concentrations in an exponential fashion. Based on product analysis, the increase in k$_{CAT}$, with increasing methanol concentration can be accounted for by nucleophilic competition of methanol for the acyl enzyme intermediate, indicating that the rate-limiting step of the porcine pancreatic lipase-catalyzed reaction is deacylation under current experimental conditions. The exponential increase in K$_{M}$ at methanol concentrations higher than $30\%$ is attributed to the hydrophobic partitioning effect on substrate binding. There was no loss of lipase activity over a 4 h period in $60\%$ methanol concentration at pH$^{circ}$ 5.5 and 0$^{circ}$C. By monitoring the intrinsic fluorescence and absorbance, no evidence for structural changes by methanol was observed.

키워드

참고문헌

  1. Affleck, R., C. A Haynes, and D. S. Clark. 1992. Solvent dielectric effects on protein dynamics. Proc. Natl. Acad. Sci. USA 89: 5167-5170
  2. Brady, L., A. M. Brzozowski, Z. S. Derewenda, E. Dodson, G. Dodson, S. Tolley, J. P. Turkenburg, L. Christiansen, B. Huge-Jensen, L. Norskov, L. Thim, and U. Menge. 1990. A serine protease triad forms the catalytic centre of a tryacylglycerollipase. Nature 343: 767- 770 https://doi.org/10.1038/343767a0
  3. Burdette, R. A. and D. M. Quinn. 1986. Interfacial reaction dynamics and acylenzyme mechanism for lipoprotein lipasecatalyzed hydrolysis of lipid p-nitrophenyl ester. J. Biol. Chem. 261: 12016- 12021
  4. Cartwright, S. J. and S. G. Waley. 1987. Cryoenzymology of $\beta$ lactamases. Biochemistry 26: 5329- 5337 https://doi.org/10.1021/bi00391a017
  5. Compton, P. D., R. J. Coll, and A. L. Fink. 1986. Effect of methanol cryosolvents on the structural and catalytic properties of bovine trypsin. J. Biol. Chem. 261: 1248-1252
  6. Fink, A L. 1974. The trypsin-catalyzed hydrolysis of $N^{\alpha}-benzyloxycarbonyl-L-lysine-p-nitrophenyl$ ester in dimethylsulfoxide at subzero temperature. J. Biol. Chem. 249: 5027- 5032
  7. Hilton, S. and J. T. Buckley. 1991. Studies on the reaction mechanism of a Microbiol Iipase/acyltransferase using chemical modification and site-directed mutagenesis. J. Biol. Chem. 266: 997- 1000
  8. Kazlauskas, R. J. 1994. Elucidating structure-mechanism relationships in lipases: Prospects for predicting and engineering catalytic properties. Trends Biotechnol. 12: 464- 472 https://doi.org/10.1016/0167-7799(94)90022-1
  9. Lemke, K., M. Lemke, and F. Theil. 1997. A threedimensional predictive active site model for lipase from Pseudomonas cepacia. J. Org. Chem. 63: 6268- 6273
  10. Moreau, H., A. Moulin, Y. Gargouri, J. Noel. and R. Verger. 1991. Inactivation of gastric and pancreatic lipases by diethyl p-nitrophenyl phosphate. Biochemistry 30: 1037-1041 https://doi.org/10.1021/bi00218a022
  11. Paiva, A. L., V. M. Balcao, and F. X. Malcata, 2000. Kinetics and mechanisms of reactions catalyzed by immobilized lipases, Enzyme Microb. Technol. 27: 187- 204 https://doi.org/10.1016/S0141-0229(00)00206-4
  12. Park, H. and Y. M. Chi. 2001. The enhancement of electro stricti on caused by lowering the solvent dielectric constant leads to the decrease of activation energy in trypsin catalysis. Biochim. Biophys. Acta 1568: 53- 59 https://doi.org/10.1016/S0304-4165(01)00199-4
  13. Peters, G. H., D. M. F. van Aalten, O. Edholm, S. Toxvaerd, and R. Bywater. 1996. Dynamics of proteins in different solvent systems: Analysis of essential motion in lipases. Biophys. J. 71: 2245- 2255 https://doi.org/10.1016/S0006-3495(96)79428-6
  14. Peters, G. H., S. Toxvaerd, O. H. Olsen, and A. Svendsen. 1997. Computational studies of the activation of lipase and the effect of a hydrophobic environment. Protein Eng. 10: 137- 147 https://doi.org/10.1093/protein/10.2.137
  15. Petersen, M. T. N., P. Fojan, and S. B. Petersen. 2001. How do lipases and esterases work: The electrostatic contribution. J. Biotechnol. 85: 115- 147 https://doi.org/10.1016/S0168-1656(00)00360-6
  16. Reyes, H. R. and C. G. Hill. 1993. Kinetic modeling of interesterification reactions catalyzed by immobilized lipase. Biotechnol. Bioengin. 43: 171- 18
  17. Stevanato, R., B. Mondovi, O. Befani, M. Scarpa, and A. Rigo. 1994. Electrostatic control of oxidative deamination catalyzed by bovine serum amine oxidase. Biochem. J. 299: 317- 320 https://doi.org/10.1042/bj2990317
  18. Stryer, L. 1995. Biochemistry, 4th Ed. pp. 207-210. W. H. Freeman & Company, NY, U.S.A
  19. Svendsen, A. 2000. Lipase protein engineering. Biochim. Biophys. Acta 1543: 223- 238 https://doi.org/10.1016/S0167-4838(00)00239-9
  20. Villeneuve, P., J. M. Muderhwa, J. Graille, and M. J. Haas. 2000. Customizing lipases for biocatalysis: A survey of chemical, physical and molecular biological approaches. J. Mol. Catal. B: Enzymatic 9: 113- 148 https://doi.org/10.1016/S1381-1177(99)00107-1
  21. Warshel, A., G. Naray-Szabo, F. Sussman, and J. K. Hwang. 1989. How do serine proteases work? Biochemistry 28: 3629- 3637 https://doi.org/10.1021/bi00435a001
  22. Zandonella, G., P. Stadler, L. Haalck, F. Spener, F. Paltauf, and A. Hermetter. 1999. Interactions of fluorescent triacylglycerol analogs covalently bound to the active site of a lipase from Rhizopus oryzae. Eur. J. Biochem. 262: 63- 69 https://doi.org/10.1046/j.1432-1327.1999.00325.x