• 제목/요약/키워드: Intraoral scanned digital model

검색결과 23건 처리시간 0.023초

가상 골격-치열 하이브리드 이미지 생성을 위한 구강 스캐너의 활용 (Intraoral Scan for Virtual Skull-Dentition Hybrid Images of Young Patients)

  • 이주희;양병은;이혜림
    • 대한소아치과학회지
    • /
    • 제49권1호
    • /
    • pp.57-64
    • /
    • 2022
  • 콘빔 전산화 단층촬영(CBCT)은 치열을 왜곡시켜 추가 치열 이미지가 필요하다. 치열 이미지로 주로 사용되는 석고 모형을 대신해 구강 스캐너로 CBCT의 치열 이미지를 보완할 때의 임상적 활용 가능성을 평가하였다. 만 12 - 18세의 20명에게 상악에 대한 석고 모형, 구강 스캔 이미지, CBCT이미지를 획득하였다. 비교를 위해 두 종류의 구강 스캐너를 이용하였는데, 그 중 하나의 구강 스캐너로는 전악을 3분할하여 각각을 스캔한 후 이들을 병합해 전악 이미지를 획득하는 방법을 추가로 시행하였다. 구강 스캐너를 이용해 얻은 가상 골격-치열 하이브리드 이미지를 석고 모형을 통해 얻은 이미지와 중첩하여 각 기준점에서의 좌표 값의 차이와 거리를 측정하였다. 결과적으로 구강 스캐너로 분할하여 스캔하는 방법을 시행했을 때 평균 거리 2 ㎛를 보여 가장 적게 나타났다. 구강 스캐너를 적절히 이용하면 가상 골격-치열 하이브리드 이미지를 위한 치열 이미지로 훌륭히 활용될 수 있을 것이다.

Evaluating Measurements: A Comparative Study of Digital and Plaster Models for Orthodontic Applications in Mixed Dentition

  • Seo Young Shin;Yong Kwon Chae;Ko Eun Lee;Mi Sun Kim;Ok Hyung Nam;Hyo-seol Lee;Sung Chul Choi
    • 대한소아치과학회지
    • /
    • 제51권1호
    • /
    • pp.55-65
    • /
    • 2024
  • This study aimed to assess the accuracy of tooth widths, intermolar widths, and arch lengths acquired through two intraoral scanners, including iTero Element Plus Series (Align Technology, Santa Clara, CA, USA) and Trios 4 (3Shape, Copenhagen, Denmark), specifically on mixed dentition. A total of 30 subjects were divided into 2 groups, each undergoing both alginate impressions and intraoral scanning using either the iTero or Trios scanner. The plaster models were measured with a caliper, while the digital models were measured virtually. In the iTero group, all tooth width measurements exhibited differences compared to the plaster values, except for maxillary left lateral incisors (p = 0.179), mandibular right (p = 0.285), and left (p = 0.073) central incisors. The Trios group did not display significant differences in any of the tooth width measurements. Intermolar width comparisons for both groups indicated differences, except for mandibular primary canine to primary canine values (p = 0.426) in the iTero group. Regarding arch length, the mandibular anterior, maxillary right, and left arch lengths in the iTero group demonstrated larger caliper values than those of iTero. Conversely, in the Trios group, all parameters showed smaller caliper values, especially in upper anterior, maxillary right, mandibular right, and mandibular left arch lengths with significance (p = 0.027, 0.007, 0.003, and 0.047, respectively). Despite the differences between the two groups, digital models might be clinically suitable alternatives for plaster models. Pediatric dentists should carefully assess these differences, as a comprehensive evaluation would result in precise orthodontic treatment planning and favorable outcomes for young patients with mixed dentition.

Accuracy of Bite Registration Using Intraoral Scanner Based on Data Trimming Strategy for Fremitus Teeth

  • Jeong, Yuwon;Shim, June-Sung;Kim, Jee-Hwan;Kim, Jong-Eun;Lee, Hyeonjong
    • Journal of Korean Dental Science
    • /
    • 제15권1호
    • /
    • pp.61-67
    • /
    • 2022
  • Purpose: This study aimed to evaluate the accuracy of bite registration using intraoral scanner based on data trimming strategy for fremitus teeth. Materials and Methods: A reference model was designed by Medit Model Builder software (MEDIT Corp., Seoul). Tooth number 24 and 25 were separated as dies and tooth number 26 was prepared for full-coverage crown. Those were printed using a 3D printer (NextDent 5100). The scanning procedure was performed by a single trained operator with one intraoral scanner (i700; MEDIT Corp.). The scanning groups were divided as follows: group 1 (G1), no fremitus; group 2 (G2), 0.5 mm buccal fremitus in the maxillary left first and second premolar; and group 3 (G3), 1.5 mm buccal fremitus in the maxillary left first and second premolar. Each group was scanned 10 times and were analyzed using the reference model data. Surface-based occlusal clearance was analyzed at the prepared tooth to evaluate accuracy. Result: Mean values of control group (G1) were 1.587±0.021 mm. G2 showed similar values to those from the control group (1.580±0.024 mm before trimming strategy and 1.588±0.052 mm after trimming strategy). G3 showed significantly greater values (1.627±0.025 mm before trimming strategy and 1.590±0.024 mm after trimming strategy) and the differences were found between trimming strategy (P=0.004). Conclusion: Bite trimming strategy for fremitus teeth is a reliable technique to reduce inaccuracies caused by the mobility at maximum intercuspation.

임플란트 디지털 인상용 코핑의 정확성 비교 (Comparison of the accuracy of implant digital impression coping)

  • 안교진;이준석
    • 구강회복응용과학지
    • /
    • 제36권1호
    • /
    • pp.29-40
    • /
    • 2020
  • 목적: Encoded healing abutment와 scan body를 이용한 디지털 인상과 pick-up 인상용 코핑을 이용한 인상 채득법의 정확도를 다른 임플란트 식립 각도에서 비교 연구하고자 하였다. 연구 재료 및 방법: 3D 프린터를 이용해 주모형을 제작하고 0°, 10° 및 20°의 근심경사로 3개의 임플란트를 위치 시켰다. 각각의 임플란트에 지대주를 체결하고 주모형을 스캔하여 참조 모델을 만들었다. P군 모델은 pick-up 인상용 코핑을 사용하여 15개의 석고 모형을 만들고 지대주를 장착 후 스캔하여 제작하였다. E군과 S군의 모델은 각각 encoded healing abutment와 scan body를 주모형에 체결하고 구내 스캐너를 이용해 15회씩 인상채득을 하여 제작하였다. 각각의 실험군 STL 파일은 best fit alignment를 이용해 참조 모델과 중첩하였고 root mean square (RMS) 값을 분석하였다. 결과: RMS 값은 P군에서 가장 작았고(25.56 ± 2.53 ㎛), 그다음 S군(35.27 ± 2.56 ㎛), E군(38.29 ± 4.12 ㎛) 순 이었다. S군과 E군 사이에는 유의차가 없었고, P군은 S군과 E군 보다 작았다(P < 0.05). 임플란트 각도와 RMS 값의 상관관계는 E군에서 유의하였다(P < 0.05). 결론:Pick-up 인상용 코핑 방법은 encoded healing abutment와 scan body 인상 채득 방법에 비해 더 높은 정확도를 보였고 encoded healing abutment와 scan body 인상 방법은 정확도에서 유의한 차이가 없었다. Encoded healing abutment의 임상적 사용은 가능하나 경사진 임플란트의 인상의 경우 주의하여 사용해야 할 것으로 사료된다.

A Fully Digital Auricular Splint Workflow for Post-Keloid Excision

  • Rahmat Maria;Yee Onn Kok;Khim Hean Teoh
    • Archives of Plastic Surgery
    • /
    • 제50권6호
    • /
    • pp.563-567
    • /
    • 2023
  • Ear keloids are challenging lesions to treat due to high recurrence rates postexcision. Conservative compression techniques as adjunct treatment have been reported to be effective. An innovative technique of using computer-aided design/computed-aided manufacturing to print a customized auricular splint improves efficiency and comfort level for patients compared with conventional methods. The ear is scanned using an intraoral scanning 2 weeks postsurgery. A two-piece auricular splint is designed on the digital model, incorporating perforated projections for three nylon screws for retention of the splint. The splint is printed with clear acrylic material, postprocessed, and finished. The patient is taught to assemble the components of the splint and instructed to wear for at least 8 hours daily. The surgery site reviewed for any ulceration, pain, or recurrence of keloid for 6 months. During the 6-month review, the excision scar remained flat and pink. The patient also reports unrestricted daily activities. The digital workflow increases comfort for the patient and reduces the number of hours required to produce a customized auricular splint compared with conventional methods. A fully digital workflow for a printed auricular splint should be considered for adjunctive treatment to excision of ear keloids.

Effect of angulation on the 3D trueness of conventional and digital implant impressions for multi-unit restorations

  • Ozay Onoral;Sevcan Kurtulmus-Yilmaz;Dilem Toksoy;Oguz Ozan
    • The Journal of Advanced Prosthodontics
    • /
    • 제15권6호
    • /
    • pp.290-301
    • /
    • 2023
  • PURPOSE. The study aimed to determine the influence of implant angulation on the trueness of multi-unit implant impressions taken through different techniques and strategies. MATERIALS AND METHODS. As reference models, three partially edentulous mandibular models (Model 1: No angulation; Model 2: No angulation for #33, 15-degree distal angulation for #35 and #37; Model 3: No angulation for #33, 25-degree distal angulation for #35 and #37) were created by modifying the angulations of implant analogues. Using a lab scanner, these reference models were scanned. The obtained data were preserved and utilized as virtual references. Three intraoral scanning (IOS) strategies: IOS-Omnicam, ISO-Quadrant, and IOS-Consecutive, as well as two traaditional techniques: splinted open tray (OT) and closed tray (CT), were used to create impressions from each reference model. The best-fit alignment approach was used to sequentially superimpose the reference and test scan data. Computations and statistical analysis of angular (AD), linear (LD), and 3D deviations (RMS) were performed. RESULTS. Model type, impression technique, as well as interaction factor, all demonstrated a significant influence on AD and LD values for all implant locations (P < .05). The Model 1 and SOT techniques displayed the lowest mean AD and LD values across all implant locations. When considering interaction factors, CT-Model 3 and SOT-Model 1 exhibited the highest and lowest mean AD and LD values, respectively. Model type, impression technique, and interaction factor all revealed significant effects on RMS values (P ≤ .001). CT-Model 3 and SOT-Model 1 presented the highest and lowest mean RMS values, respectively. CONCLUSION. Splinted-OT and IOS-Omnicam are recommended for multi-unit implant impressions to enhance trueness, potentially benefiting subsequent manufacturing stages.

Does the palatal vault form have an influence on the scan time and accuracy of intraoral scans of completely edentulous arches? An in-vitro study

  • Osman, Reham;Alharbi, Nawal
    • The Journal of Advanced Prosthodontics
    • /
    • 제14권5호
    • /
    • pp.294-304
    • /
    • 2022
  • PURPOSE. The purpose of this study was to evaluate the influence of different palatal vault configurations on the accuracy and scan speed of intraoral scans (IO) of completely edentulous arches. MATERIALS AND METHODS. Three different virtual models of a completely edentulous maxillary arch with different palatal vault heights- Cl I moderate (U-shaped), Cl II deep (steep) and Cl III shallow (flat)-were digitally designed using CAD software (Meshmixer; Autodesk, USA) and 3D-printed using SLA-based 3D-printer (XFAB; DWS, Italy) (n = 30; 10 specimens per group). Each model was scanned using intraoral scanner (Trios 3; 3ShapeTM, Denmark). Scanning time was recorded for all samples. Scanning accuracy (trueness and precision) were evaluated using digital subtraction technique using Geomagic Control X v2020 (Geomagic; 3DSystems, USA). One-way analysis of variance (ANOVA) test was used to detect differences in scanning time, trueness and precision among the test groups. Statistical significance was set at α = .05. RESULTS. The scan process could not be completed for Class II group and manufacturer's recommended technique had to be modified. ANOVA revealed no statistically significant difference in trueness and precision values among the test groups (P=.959 and P=.658, respectively). Deep palatal vault (Cl II) showed significantly longer scan time compared to Cl I and III. CONCLUSION. The selection of scan protocol in complex cases such as deep palatal vault is of utmost importance. The modified, adopted longer path scan protocol of deep vault cases resulted in increased scan time when compared to the other two groups.

Comparison of three-dimensional digital technique with two-dimensional replica method for measuring marginal and internal fit of full coverage restorations

  • Hasanzade, Mahya;Koulivand, Soudabeh;Moslemian, Naeime;Alikhasi, Marzieh
    • The Journal of Advanced Prosthodontics
    • /
    • 제12권3호
    • /
    • pp.173-180
    • /
    • 2020
  • PURPOSE. This study compared digital (reference point matching) and replica methods for measuring marginal and internal fit of full coverage restorations. MATERIALS AND METHODS. A maxillary left first molar typodent was fixed on to an aluminum base and prepared to receive all-ceramic full coverage restoration. The model was scanned with an intraoral scanner (CEREC Omnicam, Sirona, York, PA, USA). Twelve crowns were fabricated from lithium disilicate blocks (IPS emax CAD, Ivoclar Vivadent) and then crystalized. Marginal and internal fit of each restoration was measured by two examiners using replica and a new digital three-dimensional technique. Reliability between the two methods and two examiners was assessed by correlation and Cronbach's Alpha coefficient (P<.05). A Bland-Altman assessment for agreement was used to compare the two methods. RESULTS. Bland-Altman assessment showed that the mean of difference for marginal, absolute marginal, and axial gap was respectively -1.04 ㎛, -41.9 ㎛, and -29.53 ㎛ with limit of agreement (LOA) between -37.26 to 35.18 ㎛ for marginal, -105.85 to 22.05 ㎛ for absolute marginal and -80.52 to 22.02 ㎛ for axial gap. Positive correlation for repeatability (P<.05) in determining marginal and internal gaps by the two examiners in both techniques was revealed. Reliability of both techniques in all sites of measurements was at least good (0.8 ≤ α < 0.9). CONCLUSION. Both measuring techniques appeared highly reliable for evaluating fit of fixed dental restorations, while reference point matching provided higher values in axial and absolute marginal gap assessment.

Efficiency of occlusal and interproximal adjustments in CAD-CAM manufactured single implant crowns - cast-free vs 3D printed cast-based

  • Graf, Tobias;Guth, Jan-Frederik;Diegritz, Christian;Liebermann, Anja;Schweiger, Josef;Schubert, Oliver
    • The Journal of Advanced Prosthodontics
    • /
    • 제13권6호
    • /
    • pp.351-360
    • /
    • 2021
  • PURPOSE. The aim of this study was to evaluate the efficiency of occlusal and interproximal adjustments of single implant crowns (SIC), comparing a digital cast-free approach (CF) and a protocol using 3D printed casts (PC). MATERIALS AND METHODS. A titanium implant was inserted at position of lower right first molar in a typodont. The implant position was scanned using an intraoral scanner and SICs were fabricated accordingly. Ten crowns (CF; n = 10) were subject to a digital cast-free workflow without any labside occlusal and interproximal modifications. Ten other identical crowns (PC) were adjusted to 3D printed casts before delivery. All crowns were then adapted to the testing model, simulating chair-side adjustments during clinical placement. Adjustment time, quantity of adjustments, and contact relationship were assessed. Data were analyzed using SPSS software (P < .05). RESULTS. Median and interquartile range (IQR) of clinical adjustment time was 02:44 (IQR 00:45) minutes in group CF and 01:46 (IQR 00:21) minutes in group PC. Laboratory and clinical adjustment time in group PC was 04:25 (IQR 00:59) minutes in total. Mean and standard deviation (±SD) of root mean squared error (RMSE) of quantity of clinical adjustments was 45 ± 7 ㎛ in group CF and 34 ± 6 ㎛ in group PC. RMSE of total adjustments was 61 ± 11 ㎛ in group PC. Quality of occlusal contacts was better in group CF. CONCLUSION. Time effort for clinical adjustments was higher in the cast-free protocol, whereas quantity of modifications was lower, and the occlusal contact relationship was found more favourable.

Comparison of the accuracy of digitally fabricated polyurethane model and conventional gypsum model

  • Kim, So-Yeun;Lee, So-Hyoun;Cho, Seong-Keun;Jeong, Chang-Mo;Jeon, Young-Chan;Yun, Mi-Jung;Huh, Jung-Bo
    • The Journal of Advanced Prosthodontics
    • /
    • 제6권1호
    • /
    • pp.1-7
    • /
    • 2014
  • PURPOSE. The accuracy of a gypsum model (GM), which was taken using a conventional silicone impression technique, was compared with that of a polyurethane model (PM), which was taken using an iTero$^{TM}$ digital impression system. MATERIALS AND METHODS. The maxillary first molar artificial tooth was selected as the reference tooth. The GMs were fabricated through a silicone impression of a reference tooth, and PMs were fabricated by a digital impression (n=9, in each group). The reference tooth and experimental models were scanned using a 3 shape convince$^{TM}$ scan system. Each GM and PM image was superimposed on the registered reference model (RM) and 2D images were obtained. The discrepancies of the points registered on the superimposed images were measured and defined as GM-RM group and PM-RM group. Statistical analysis was performed using a Student's T-test (${\alpha}=0.05$). RESULTS. A comparison of the absolute value of the discrepancy revealed a significant difference between the two groups only at the occlusal surface. The GM group showed a smaller mean discrepancy than the PM group. Significant differences in the GM-RM group and PM-RM group were observed in the margins (point a and f), mesial mid-axial wall (point b) and occlusal surfaces (point c and d). CONCLUSION. Under the conditions examined, the digitally fabricated polyurethane model showed a tendency for a reduced size in the margin than the reference tooth. The conventional gypsum model showed a smaller discrepancy on the occlusal surface than the polyurethane model.