• Title/Summary/Keyword: Intramolecular interaction

Search Result 64, Processing Time 0.029 seconds

The Effects of Intramolecular Interactions of Random Copolymers on the Phase Behavior of Polymer Mixtures

  • Kim, M. J.;J. E. Yoo;Park, H. K.;Kim, C. K.
    • Macromolecular Research
    • /
    • v.10 no.2
    • /
    • pp.91-96
    • /
    • 2002
  • To explore the effects of intramolecular interactions within the copolymer on the phase separation behavior of polymer blends, copolymers having two different types of intramolecular interactions, i.e., intramolecular repulsion and intramolecular attraction were prepared . In this study, poly(styrene-co-methylmethacrylate) (P(S-MMA)) having intramolecular repulsion caused by positive interaction between styrene and MMA and poly(styrene-co-ethyl-methacrylate) (P(S-EMA)) and poly(styrene-co-cyclohexylmethacrylate) (P(S-CHMA)) having intramolecular attraction caused by negative interaction between styrene and methacrylate were blended with tetramethyl poly-carbonate (TMPC). The phase behavior of blends was examined as a function of copolymer composition and blend composition. TMPC formed miscible blends with styrenic copolymers containing less than certain amount of methacrylate. The phase separation temperature of TMPC blends with copolymer such as P(S-MMA) and P(S-EMA), first increases with methacrylate content, goes through a maximum and then decreases just prior to the limiting content of methacrylate for miscibility, while that of TMPC blends with P(S-CHMA) always decreases. The calculated interaction energy for TMPC-P(S-EMA) pair is negative and monotonically increases with EMA content of the copolymer. Such behavior contradicted the general notion that systems with more favorable energetic interactions have higher LCST, The detailed inspection of the lattice-fluid theory related to the phase behavior was performed to explain such behavior.

Charge-Transfer Complexing Properties of 1-Methyl Nicotinamide and Adenine in Relation to the Intramolecular Interaction in Nicotinamide Adenine Dinucleotide (NAD$^+$)

  • Park, Joon-woo;Paik, Young-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.1
    • /
    • pp.23-29
    • /
    • 1985
  • The charge-transfer complexing properties of 1-methyl nicotinamide (MNA), an acceptor, and adenine, a donor, were investigated in water and SDS micellar solutions in relation to the intramolecular interaction in nicotinamide adenine dinucleotide ($NAD^+$). The spectral and thermodynamic parameters of MNA-indole and methyl viologen-adenine complex formations were determined, and the data were utilized to evaluate the charge-transfer abilities of MNA and adenine. The electron affinity of nicotinamide was estimated to be 0.28 eV from charge-transfer energy $of{\sim}300$ nm for MNA-indole. The large enhancement of MNA-indole complexation in SDS solutions by entropy effect was attributed to hydrophobic nature of indole. The complex between adenine and methyl viologen showed an absorption band peaked near 360 nm. The ionization potential of adenine was evaluated to be 8.28 eV from this. The much smaller enhancement of charge-transfer interaction involving adenine than that of indole in SDS solutions was attributed to weaker hydrophobic nature of the donor. The charge-transfer energy of 4.41 eV (280 nm) was estimated for nicotinamide-adenine complex. The spectral behaviors of $NAD^+$ were accounted to the presence of intramolecular interaction in $NAD^+$, which is only slightly enhanced in SDS solutions. The replacement of nicotinamide-adenine interaction in $NAD^+$ by intermolecular nicotinamide-indole interaction in enzyme bound $NAD^+$, and guiding role of adenine moiety in $NAD^+$ were discussed.

Assessment of the Performance of B2PLYP-D for Describing Intramolecular π-π and σ-π Interactions

  • Choi, Tae-Hoon;Han, Young-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4195-4198
    • /
    • 2011
  • Intramolecular ${\pi}-{\pi}$ and ${\sigma}-{\pi}$ interactions are omnipresent for numerous energetic and structural phenomena in nature, and the exact description of these nonbonding interactions plays an important role in the accurate prediction of the three-dimensional structures for numerous interesting molecular systems such as protein folding and polymer shaping. We have selected two prototype molecular systems for benchmarking calculations of intramolecular ${\pi}-{\pi}$ and ${\sigma}-{\pi}$ interactions. Accurately describing conformational energy of such systems requires highly elaborate but very expensive ab initio methods such as coupled cluster singles, doubles, and (triples) (CCSD(T)). Our calculations reveal a double hybrid density functional incorporating dispersion correction (B2PLYP-D) that agrees excellently with the CCSD(T) results, indicating that B2PLYP-D can serve as a practical method of choice.

Origin of Exo/Endo Selectivity in the Intramolecular Diels-Alder Reaction

  • Yan, Shihai;Ryu, Do-Hyun;Lee, Jin-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2527-2530
    • /
    • 2010
  • The stereoselectivity of the intramolecular Diels-Alder reactions of 1 and its derivatives were investigated by ab initio calculations. The stereoselectivity mainly originates from the steric repulsion and the orbital interactions. The additional s-cis and s-trans conformations by introducing the carbonyl group at the neighbor of diene or dienophile may change the stereoselectivity, hence this kind of substitution can be utilized for stereoselectivive asymmetric synthesis.

Quantification for the Distribution of Hydrogen Bonding Species in Phenolic Model Compounds and Polybenzoxazines (페놀계 모델 화합물 및 폴리벤조옥사진 수지에 대한 수소결합분포의 정량화)

  • Kim, Ho-Dong;Moon, Hwa-Yeon
    • Textile Coloration and Finishing
    • /
    • v.20 no.4
    • /
    • pp.21-30
    • /
    • 2008
  • To understand the complex hydrogen bonding structure, several phenolic derivatives and benzoxazine model compounds are synthesized and characterized by Fourier transform infrared spectroscopy (FT-IR). The estimation of molar extinction coefficients for various types of hydrogen bonding species is systematically carried out by the curve-resolving of FT-IR spectra. The distribution of hydrogen bonding species in benzoxazine model dimers is quantitatively analyzed. It is revealed that benzoxazine dimers and BA-a polybenzoxazine are mainly composed of intramolecular interaction rather than intermolecular interaction.

Studies of Inter/intramolecular Weak Interactions with CH… S; and S…arene Interaction in Symmetrical and Dissymmetrical Models

  • Dubey, Rashmi;Tewari, Ashish K.;Ravikumar, K.;Sridhar, B.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1326-1330
    • /
    • 2010
  • Evidences have proved the versatile role of sulfur atom in supramolecular chemistry. $^1$Presence of S atom in the molecule usually results in the specific structural properties of molecules. In the present study, $S{\cdots}arene$, $N{\cdots}arene$, $CH{\cdots}{\pi}$, $CH{\cdots}S$ and $CH{\cdots}N$ type of weak interactions stabilize the conformation and self assembly of symmetrical as well as dissymmetrical molecules.

Aminolysis of Benzyl 4-Pyridyl Carbonate in Acetonitrile: Effect of Modification of Leaving Group from 2-Pyridyloxide to 4-Pyridyloxide on Reactivity and Reaction Mechanism

  • Bae, Ae-Ri;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2719-2723
    • /
    • 2012
  • A kinetic study is reported for nucleophilic substitution reactions of benzyl 4-pyridyl carbonate 6 with a series of alicyclic secondary amines in MeCN. The plot of pseudo-first-order rate constant ($k_{obsd}$) vs. [amine] curves upward, which is typical for reactions reported previously to proceed through a stepwise mechanism with two intermediates (i.e., a zwitterionic tetrahedral intermediate $T^{\pm}$ and its deprotonated form $T^-$). Dissection of $k_{obsd}$ into the second- and third-order rate constants (i.e., $Kk_2$ and $Kk_3$, respectively) reveals that $Kk_3$ is significantly larger than $Kk_2$, indicating that the reactions proceed mainly through the deprotonation pathway (i.e., the $k_3$ process) in a high [amine] region. This contrasts to the recent report that the corresponding aminolysis of benzyl 2-pyridyl carbonate 5 proceeds through a forced concerted mechanism. An intramolecular H-bonding interaction was suggested to force the reactions of 5 to proceed through a concerted mechanism, since it could accelerate the rate of leaving-group expulsion (i.e., an increase in $k_2$). However, such H-bonding interaction, which could increase $k_2$, is structurally impossible for the reactions of 6. Thus, presence or absence of an intramolecular H-bonding interaction has been suggested to be responsible for the contrasting reaction mechanisms (i.e., a forced concerted mechanism for the reaction of 5 vs. a stepwise mechanism with $T^{\pm}$ and $T^-$ as intermediates for that of 6).

Two Critical Aggregation Concentrations in Interaction of Poly(diallyldimethylammonium chloride) with Anionic Surfactant Sodium Dodecyl Sulfate (폴리(디알릴디메틸암모늄 클로라이드)와 음이온 계면활성제 도데실 황산 소듐의 상호작용에 따른 두 종류의 임계 응집 농도)

  • 김용철;박일현;양경모;조동환
    • Polymer(Korea)
    • /
    • v.28 no.2
    • /
    • pp.111-120
    • /
    • 2004
  • The interaction between poly(diallyldimethylammonium chloride) (PDADMAC) of positive charge per repeating unit and anionic surfactant, sodium dodecyl sulfate (SDS) has been investigated by light scattering, turbidimetry and fluorescence. Chain behavior of PDADMAC in 0.3 M NaCl aqueous solution seems like neutral polymer chain In good solvent. By adding SDS into PDADMAC solution, strong attractive interaction develops between them, and can be described with two kinds of critical aggregation concentration(CAC). First, at [SDS]/]DADMAC] 0.06, intramolecular critical micellization of SDS occurs inside a single polymer chain. The maximum size of SDS-polymer complex is observed just before intramolecular CAC. Above intramolecular CAC, the size of this complex starts to shrink slowly due to involvement of polymer subchain in micelle. Second, intermolecular CAC is also observed at [SDS]/[DADMAC] 0.5 by means of turbidimetry. Strong aggregation of polymer chains decorated with many micelles occurs after the second CAC, and huge aggregates have formed.