DOI QR코드

DOI QR Code

Origin of Exo/Endo Selectivity in the Intramolecular Diels-Alder Reaction

  • Yan, Shihai (Department of Chemistry, Sungkyunkwan University) ;
  • Ryu, Do-Hyun (Department of Chemistry, Sungkyunkwan University) ;
  • Lee, Jin-Yong (Department of Chemistry, Sungkyunkwan University)
  • 투고 : 2010.06.07
  • 심사 : 2010.07.16
  • 발행 : 2010.09.20

초록

The stereoselectivity of the intramolecular Diels-Alder reactions of 1 and its derivatives were investigated by ab initio calculations. The stereoselectivity mainly originates from the steric repulsion and the orbital interactions. The additional s-cis and s-trans conformations by introducing the carbonyl group at the neighbor of diene or dienophile may change the stereoselectivity, hence this kind of substitution can be utilized for stereoselectivive asymmetric synthesis.

키워드

참고문헌

  1. Houk, K. N.; González, J.; Li, Y. Acc. Chem. Res. 1995, 28, 81. https://doi.org/10.1021/ar00050a004
  2. Kumar, A. Chem. Rev. 2001, 101, 1. https://doi.org/10.1021/cr990410+
  3. Corey, E. J. Angew. Chem. Int. Ed. 2002, 41, 1650. https://doi.org/10.1002/1521-3773(20020517)41:10<1650::AID-ANIE1650>3.0.CO;2-B
  4. Nicolaou, K. C.; Snyder, S. A.; Montagnon, T.; Vassilikogiannakis, G. Angew. Chem. Int. Ed. 2002, 41, 1668. https://doi.org/10.1002/1521-3773(20020517)41:10<1668::AID-ANIE1668>3.0.CO;2-Z
  5. Dewar, M. J. S.; Jie, C. X. Acc. Chem. Res. 1992, 25, 537. https://doi.org/10.1021/ar00023a008
  6. Beno, B. R.; Houk, K. N.; Singleton, D. A. J. Am. Chem. Soc. 1996, 118, 9984. https://doi.org/10.1021/ja9615278
  7. Sodupe, M.; Rios, R.; Branchadell, V.; Nicholas, T.; Oliva, A.; Dannenberg, J. J. J. Am. Chem. Soc. 1997, 119, 4232. https://doi.org/10.1021/ja9628260
  8. Ge, M.; Stoltz, B. M.; Corey, E. J. Org. Lett. 2000, 2, 1927. https://doi.org/10.1021/ol0060026
  9. Hosokawa, S.; Seki, M.; Fukuda, H.; Tatsuta, K. Tetrahedron Lett. 2006, 47, 2439. https://doi.org/10.1016/j.tetlet.2006.01.140
  10. Kim, J. Y.; Hwang, G.-S.; Lee, S. M.; Han, J. H.; Kim, E. Y.; Ryu, D. H. Bull. Korean Chem. Soc. 2009, 30, 289. https://doi.org/10.5012/bkcs.2009.30.2.289
  11. Brieger, G.; Bennett, J. N. Chem. Rev. 1980, 80, 63. https://doi.org/10.1021/cr60323a004
  12. Lilly, M. J.; Paddon-Row, M. N.; Sherburn, M.; Turner, C. I. Chem. Commun. 2000, 2213.
  13. Tantillo, D. J.; Houk, K. N.; Jung, M. E. J. Org. Chem. 2001, 66, 1938. https://doi.org/10.1021/jo001172h
  14. Turner, C. I.; Williamson, R. M.; Paddon-Row, M. N.; Sherburn, M. S. J. Org. Chem. 2001, 66, 3963. https://doi.org/10.1021/jo015516v
  15. Cayzer, T. N.; Wong, L. S.-M.; Turner, P.; Paddon-Row, M. N.; Sherburn, M. S. Chem. Eur. J. 2002, 8, 739. https://doi.org/10.1002/1521-3765(20020201)8:3<739::AID-CHEM739>3.0.CO;2-1
  16. Takao, K.; Munakatam, R.; Tadano, K. Chem. Rev. 2005, 105, 4779. https://doi.org/10.1021/cr040632u
  17. Bradford, T. A.; Payne, A. D.; Willis, A. C.; Paddon-Row, M. N.; Sherburn, M. S. Org. Lett. 2007, 9, 4861. https://doi.org/10.1021/ol7021998
  18. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. https://doi.org/10.1103/PhysRevB.37.785
  19. Becke, A. D. J. Chem. Phys. 1993, 98, 1372. https://doi.org/10.1063/1.464304
  20. Becke, A. D. J. Chem. Phys. 1993, 98, 5648. https://doi.org/10.1063/1.464913
  21. Gordillo, R.; Dudding, T.; Anderson, C. D.; Houk, K. N. Org. Lett. 2007, 9, 501. https://doi.org/10.1021/ol0629925
  22. Houk, K. N.; Li, Y.; Evanseck, J. D. Angew. Chem. Int. Ed. 1992, 31, 682. https://doi.org/10.1002/anie.199206821
  23. Jones, G. A.; Paddon-Row, M. N.; Sherburn, M. S.; Turner, C. I. Org. Lett. 2002, 4, 3789. https://doi.org/10.1021/ol0264713
  24. Bakalova, S. M.; Santos, A. G. J. Org. Chem. 2004, 69, 8475. https://doi.org/10.1021/jo049298s
  25. Frisch, M. J. et al. Gaussian 03; Gaussian, Inc.: Wallingford, CT, 2004.
  26. Coe, J. W.; Roush, W. R. J. Org. Chem. 1989, 54, 915. https://doi.org/10.1021/jo00265a036
  27. Roush, W. R. In Comprehensive Organic Synthesis; Trost, B. M., Ed.; Pergamon: Oxford, 1991; Vol. 5, Chapter 4.4, pp 513-550.
  28. Jung, M. E.; Huang, A.; Johnson, T. W. Org. Lett. 2000, 2, 1835. https://doi.org/10.1021/ol000104e
  29. Motozaki, T.; Sawamura, K.; Suzuki, A.; Yoshida, K.; Ueki, T.; Ohara, A.; Munakata, R.; Takao, K.; Tadano, K. Org. Lett. 2005, 7, 2265. https://doi.org/10.1021/ol050763x
  30. Loncharich, R. J.; Brown, F. W.; Houk, K. N. J. Org. Chem. 1989, 54, 1129. https://doi.org/10.1021/jo00266a026
  31. Birney, D. M.; Houk, K. N. J. Am. Chem. Soc. 1990, 112, 4127. https://doi.org/10.1021/ja00167a005
  32. García, J. I.; Martinez-Merino, V.; Mayoral, J. A.; Salvatella, L. J. Am. Chem. Soc. 1998, 120, 2415. https://doi.org/10.1021/ja9722279
  33. Paddon-Row, M. N.; Sherburn, M. S. Chem. Commun. 2000, 2215.
  34. Kong, S.; Evanseck, J. D. J. Am. Chem. Soc. 2000, 122, 10418. https://doi.org/10.1021/ja0010249
  35. Bakalova, S. M.; Santos, A. G. J. Org. Chem. 2004, 69, 8475. https://doi.org/10.1021/jo049298s
  36. Pidaparthi, R. R.; Welker, M. E.; Day, C. S.; Wright, M. W. Org. Lett, 2007, 9, 1623. https://doi.org/10.1021/ol070089e
  37. Singh, R. S.; Adachi, S.; Tanaka, F.; Yamauchi, T.; Inui, C.; Harada, T. J. Org. Chem. 2008, 73, 212. https://doi.org/10.1021/jo702043g