• 제목/요약/키워드: Intramolecular hydrogen transfer

검색결과 23건 처리시간 0.022초

Excited State Dynamics of Curcumin and Solvent Hydrogen Bonding

  • Yang, Il-Seung;Jin, Seung-Min;Kang, Jun-Hee;Ramanathan, Venkatnarayan;Kim, Hyung-Min;Suh, Yung-Doug;Kim, Seong-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권spc8호
    • /
    • pp.3090-3093
    • /
    • 2011
  • Curcumin is a natural product with antioxidant, anti-inflammatory, antiviral and antifungal functions. As it is known that the excited state intramolecular hydrogen transfer of curcumin are related to its medicinal antioxidant mechanism, we investigated its excited state dynamics by using femtosecond transient absorption spectroscopy in an effort to understand the molecule's therapeutic effect in terms of its photophysics and photochemistry. We found that stronger intermolecular hydrogen bonding with solvents weakens the intramolecular hydrogen bonding and decelerates the dynamical process of the enolic hydrogen. Exceptions are found in methanol and ethylene glycol due to their nature as simultaneous hydrogen bonding donor-acceptor and high viscosity solvent, respectively.

Structure and Intramolecular Proton Transfer of Alanine Radical Cations

  • Lee, Gab-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권5호
    • /
    • pp.1561-1565
    • /
    • 2012
  • The structures of the four lowest alanine conformers, along with their radical cations and the effect of ionization on the intramolecular proton transfer process, are studied using the density functional theory and MP2 method. The energy order of the radical cations of alanine differs from that of the corresponding neutral conformers due to changes in the basicity of the $NH_2$ group upon ionization. Ionization favors the intramolecular proton transfer process, leading to a proton-transferred radical-cation structure, [$NH_3{^+}-CHCH_3-COO{\bullet}$], which contrasts with the fact that a proton-transferred zwitterionic conformer is not stable for a neutral alanine in the gas phase. The energy barrier during the proton transfer process is calculated to be about 6 kcal/mol.

Excited-State Intramolecular Proton Transfer (ESIPT) Fluorescence in a Polymeric System

  • Park, Soo-Young
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.35-36
    • /
    • 2006
  • Excited-state intramolecular proton transfer (ESIPT) is a phototautomerization occurring in the excited states of the molecules possessing a cyclic intramolecular or solvent-bridged hydrogen bond. Recently, we have developed novel ESIPT chromophores, molecules, dendrimers and polymers which show very high fluorescence quantum efficiency combined with the characteristic features of optical switching, fluorescence patterining, lasing, and electroluminescence. Broad overview of these topics will be given in this talk.

  • PDF

A Density Functional Theory Investigation on Intramolecular Hydrogen Transfer of the [Os3(CO)11P(OMe)3(Ru(η5-C5H5))2] Cluster

  • Buntem, Radchada;Punyain, Kraiwan;Tantirungrotechai, Yuthana;Raithby, Paul R.;Lewis, Jack
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권4호
    • /
    • pp.934-940
    • /
    • 2010
  • The reduction of [$Os_3(CO)_{11}P(OMe)_3$] and subsequent ionic coupling of the reduced species with $[Ru({\eta}^5-C_5H_5)(CH_3CN)_3]^+$ resulted in the formation of [$Os_3(CO)_{11}P(OMe)_3(Ru({\eta}^5-C_5H_5))_2$] which can be converted to spiked tetrahedral cluster, [$HOs_3(CO)_{11}P(OMe)_3Ru_2({\eta}^5-C_5H_5)(C_5H_4)$] via the intramolecular hydrogen transfer. Due to the unavailability of a suitable single crystal, the PW91/SDD and LDA/SDD density functional methods were used to predict possible structures and the available spectroscopic information (IR, NMR) of [$Os_3(CO)_{11}P(OMe)_3(Ru({\eta}^5-C_5H_5))_2$]. The most probable geometry found by constrained search is the isomer (a2) in which the phosphite, $P(OMe)_3$, occupies an axial position on one of the two osmium atoms that is edge bridged by the $Ru(CO)_2({\eta}^5-C_5H_5)$ unit. By using the most probably geometry, the predicted infrared frequencies and $^1H$, $^{13}C$ and $^{31}P$ NMR chemical shifts of the compound are in the same range as the experimental values. For this type of complex, the LDA/SDD method is appropriate for IR predictions whereas the OPBE/IGLO-II method is appropriate for NMR predictions. The activation energy and reaction energy of the intramolecular hydrogen transfer coupled with the structural change of the transition metal framework were estimated at the PW91/SDD level to be 110.32 and -0.14 kcal/mol respectively.

COMPUTER SIMULATION OF INTRAMOLECULAR HYDROGEN TRANSFER TO CARBONYL OXYGEN BY A MONTE CARLO METHOD: PHOTOREACTIONS VIA REMOTE PROTON TRANSFER IN BENZOYLBENZOATES

  • Hasegawa, Tadashi;Yamazaki, Yuko;Yoshioka, Michikazu
    • Journal of Photoscience
    • /
    • 제4권2호
    • /
    • pp.61-67
    • /
    • 1997
  • The model based on the idea that the p$_y$-orbital of the carbonyl oxygen is responsible to receiving hydrogen was devised for simulation of intramolecular hydrogen transfer. A Monte Carlo method was applied to free rotation of a molecular chain performed by changing the dihedral angles, and a "hit" was defined as the case when the migrating hydrogen comes within the region defined as the p$_y$-orbital and satisfies all the geometrical requirements for abstraction. A set of parameters was employed for defining the region and the requirements; $\tau$ was defined as the angle formed between O...H vector and its projection on the mean plane of the carbonyl group (- 43$\circ$ < $\tau$ < + 43$\circ$), $\Delta$ as the C=O...H angle (90 -15$\circ$ < $\Delta$ < 90 + 15$\circ$), $\theta$ as the O...H - C angle ( 180 - 80$\circ$< 0 < 180 + 80$\circ$), d as the distance from the center of the lobe of the p$_y$-orbital to hydrogen (0 < d < 1.04 ${\AA}$). The minimum value for the distance between carbonyl oxygen (O$_1$) and the migrating hydrogen (H$_i$) and for that between non-bonded atoms except the pair of O$_1$ and H$_i$ were assumed to be 0.52 ${\AA}$ and 1.54 ${\AA}$, respectively. The apphcation of this model to intramolecular $\beta$-, $\gamma$-, $\delta$-, $\epsilon$-, and $\zeta$-hydrogen abstraction in ketones and $\eta$- and $\theta$- proton transfer in oxoesters gave good results reflecting their photochemical behavior. The model was also used for prediction of photoreactivities of 2-(N,N-dibenzylamino)ethyl 2-, 3- and 4-benzoylbenzoate (1a - c). (1a - c).

  • PDF

Intramolecular Hydrogen Bonding Effect on the Excited-State Intramolecular Charge Transfer of p-Aminosalicylic Acid

  • 김양희;윤민중
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권9호
    • /
    • pp.980-985
    • /
    • 1998
  • The excited-state intramolecular proton transfer (ESIPT) emission has been observed for 0.01 mM p-aminosalicylic acid (AS) in nonpolar aprotic solvents as demonstrated by the large Stokes' shifted fluorescence emission around 440 nm in addition to the normal emission at 330 nm. However in aprotic polar solvent such as acetonitrile, the large Stokes' shifted emission band becomes broadened, indicating existence of another emission band originated from intramolecular charge transfer (ICT). It is noteworthy that in protic solvents such as methanol and ethanol the normal and ICT emissions are quenched as the AS concentration decreases, followed by the appearance of new emission at 380 nm. These results are interpreted in terms of ESIPT coupled charge transfer in AS. Being consistent with these steady-state spectroscopic results, the picosecond time-resolved fluorescence study unravelled the decay dynamics of the ESIPT and ICT state ca. 300 ps and ca. 150 ps, respectively with ca. 40 ps for the relaxation time to form the ICT state.

Application of Excited-State Intramolecular Proton Transfer (ESIPT) Principle to Functional Polymeric Materials

  • Park, Sang-Hyuk;Kim, Se-Hoon;Seo, Jang-Won;Park, Soo-Young
    • Macromolecular Research
    • /
    • 제16권5호
    • /
    • pp.385-395
    • /
    • 2008
  • Synthesis and properties of novel excited-state intramolecular proton transfer (ESIPT) materials, recently developed in our group, are described. Highly efficient ESIPT reaction, achieved in polyquinolines, polybenzoxazoles, and oxadiazole and imidazole derivatives possessing an intramolecular tautomerizable hydrogen bond, has been investigated theoretically and experimentally. It is demonstrated that unique properties arising from the ESIPT process (large Stokes' shift, no self-absorption, and easy population inversion, etc.) make it possible to produce advanced polymer devices for lasing, optical storage, and electroluminescence.

Excited-State Intramolecular Proton Transfer and Related Optical Properties in a Polymeric Material System

  • Kim, Sehoon;Park, Soo-Young
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 2003년도 The Korea-Japan Joint Symposium
    • /
    • pp.27-28
    • /
    • 2003
  • Synthesis and properties of novel excited-state intramolecular proton transfer (ESIPT) materials recently developed in our group are described. Highly efficient ESIPT in polymeric system has been investigated theoretically and experimentally with a semi-rigid polyquinoline (PQH, PQDH) possessing an intramolecular tautomerizable hydrogen bond. Poly(aryl ether) dendrimers of three different generations that are cored with photo-tautomerizable quinoline (QGn, n=1,2,3) were also synthesized and characterized to investigate the effect of dendritic architecture on the ESIPT activity. Stimulated emission and amplified spontaneous emission in these organic materials system are discussed in terms of ESIPT activity.

  • PDF

Silver Colloidal Effects on Excited-State Structure and Intramolecular Charge Transfer of p-N,N-dimethylaminobenzoic Acid Aqueous Cyclodextrin Solutions

  • 최정관;김양희;윤민중;이승준;김관;정새채
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권2호
    • /
    • pp.219-227
    • /
    • 2001
  • The silver colloidal effects on the excited-state structure and intramolecular charge transfer (ICT) of p-N,N-dimethylaminobenzoic acid (DMABA) in aqueous cyclodextrin (CD) solutions have been investigated by UV-VIS absorption, steady-state and time-resolved fluorescence, and transient Raman spectroscopy. As the concentration of silver colloids increases, the ratio of the ICT emission to the normal emission (Ia /Ib) of DMABA in the aqueous $\alpha-CD$ solutions are greatly decreased while the Ia /Ib values in the aqueous B-CD solutions are significantly enhanced. It is also noteworthy that the ICT emission maxima are red-shifted by 15-40 nm upon addition of silver colloids, implying that DMABA encapsulated in $\alpha-CD$ or B-CD cavity is exposed to more polar environment. The transient resonance Raman spectra of DMABA in silver colloidal solutions demonstrate that DMABA in the excited-state is desorbed from silver colloidal surfaces as demonstrated by the disappearance of νs (CO2-)(1380 cm-1 ) with appearance of ν(C-OH)(1280 cm -1) band, respectively. Thus, in the aqueous B-CD solutions the carboxylic acid group of DMABA in the excited-state can be readily hydrogen-bonded with the secondary hydroxyl group of B-CD while in aqueous and $\alpha-CD$ solutions the carboxylic acid group of DMABA has the hydrogen-bonding interaction with water. Consequently, in the aqueous B-CD solutions the enhancement of the Ia /Ia value arises from the intermolecular hydrogen-bonding interaction between DMABA and the secondary hydroxyl group of B-CD as well as the lower polarity of the rim of the B-CD cavity compared to bulk water. This is also supported by the increase of the association constant for DMABA/ B-CD complex in the presence of silver colloids.

Solvent Dependence of Absorption and Fluorescence Spectra of Piroxicam. A Possible Intramolecular Proton Transfer in the Excited State

  • Yoon, Min-Joong;Choi, Hyong-Nae;Kwon, Hwang-Won;Park, Koon-Ha
    • Bulletin of the Korean Chemical Society
    • /
    • 제9권3호
    • /
    • pp.171-175
    • /
    • 1988
  • The spectral properties of piroxicam in different solvents are similar to those of its skeletal precursor, HMBDC. The maximum absorption and emission wavelengths strongly depend on the hydrogen bonding ability of the solvent, and it is shown that intramolecular hydrogen bonding between the -OH and the ortho carbonyl group of the parent benzothiazine ring plays an important role in the solvent-dependence of their spectroscopic properties. The fluorescence spectra in aprotic nonpolar solvent exhibit abnormally large Stokes-shifted (${\sim}9,000cm^{-1}$) emission bands in contrast to the spectra in water. In ethanol, dual emission bands with two different fractional components of lifetimes have been observed. These results suggest that the abnormally red-shifted emission is attributed to the proton transferred form of an intramolecularly hydrogen-bonded closed conformer.