• Title/Summary/Keyword: Intracellular localization

Search Result 87, Processing Time 0.021 seconds

Localization of Paclitaxel in Suspension Culture of Taxus chinensis

  • Choi, Hyung-Kyoon;Kim, Sang-Ic;Song, Jai-Young;Son;Hong, Seung-Suh;Durzan, Don-J.;Lee, Hyong-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.458-462
    • /
    • 2001
  • The localization of paclitaxel was investigated in suspension culture cells of Taxus chinensis. Over 93% of the cell-associated paclitaxel were detected throughout the entire culture period. Intracellular localization of paclitaxel over the culture time was analyzed further by cell fractionation for days 21 and 42. Paclitaxel contents in intracellular organelles were decreased at day 42, while the content in the cell wall fraction was increased at day 42 compared to the value for day 21. The localization of paclitaxel in the cell wall was confirmed by using the immunocytochemical method with the aid of a confocal laser scanning microscope.

  • PDF

Intracellular Localization and Developmental Changes of Purine Catabolic Enzymes during Germination in Cotyledons of Rape Seedlings (발아중 유채자엽 퓨린 분해효소의 활성변화 및 세포내 위치)

  • 권덕기
    • Journal of Plant Biology
    • /
    • v.28 no.3
    • /
    • pp.225-232
    • /
    • 1985
  • Intracellular localization and the developmental changes in activities of uricase and allantoinase during germination were investigated with the cotyledons of rape(Brassica napus L.) seedlings. The development anddisappearance of uricase activity took place independently of light, but allantoinase activity was increased by light. The temporal pattern of uricase activity showed that uricolysis was actively taking place in the cotyledons during their early stages of germination. While uricase can be localized in the microbody fraction isolated from crude organelle extracts of the cotyledons by density gradient centrifugation, most of the allantoinase activity found in the microbody fraction did not appear to be an integral part of the microbody.

  • PDF

Subcellular Localization of Diacylglycerol-responsive Protein Kinase C Isoforms in HeLa Cells

  • Kazi, Julhash U.;Kim, Cho-Rong;Soh, Jae-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.1981-1984
    • /
    • 2009
  • Subcellular localization of protein kinase often plays an important role in determining its activity and specificity. Protein kinase C (PKC), a family of multi-gene protein kinases has long been known to be translocated to the particular cellular compartments in response to DAG or its analog phorbol esters. We used C-terminal green fluorescent protein (GFP) fusion proteins of PKC isoforms to visualize the subcellular distribution of individual PKC isoforms. Intracellular localization of PKC-GFP proteins was monitored by fluorescence microscopy after transient transfection of PKC-GFP expression vectors in the HeLa cells. In unstimulated HeLa cells, all PKC isoforms were found to be distributed throughout the cytoplasm with a few exceptions. PKC$\theta$ was mostly localized to the Golgi, and PKC$\gamma$, PKC$\delta$ and PKC$\eta$ showed cytoplasmic distribution with Golgi localization. DAG analog TPA induced translocation of PKC-GFP to the plasma membrane. PKC$\alpha$, PKC$\eta$ and PKC$\theta$ were also localized to the Golgi in response to TPA. Only PKC$\delta$ was found to be associated with the nuclear membrane after transient TPA treatment. These results suggest that specific PKC isoforms are translocated to different intracellular sites and exhibit distinct biological effects.

First Record of Mycoplasma-like Organism in Pacific Oyster (Crassostrea gigas) in Korea

  • Choi Dong Lim;Choi Hee Jung;Lee Nam-Sil;Park Mi Seon
    • Fisheries and Aquatic Sciences
    • /
    • v.6 no.3
    • /
    • pp.135-139
    • /
    • 2003
  • During routine survey of Pacific oyster (Crassostrea gigas) collected from Tongyoung area in southern coast of Korea, histological examination revealed that a intracellular microorganisms infected the digestive gland of the oyster. They infected hepatopancreatic cells extensively. The size of intracellular microorganism was of 45 to 86nm in diameter and 200nm to more thar 500nm in length. They were pleomorphic. The morphological characteristic of intracellular microorganisms lacked cell wall and was bounded by the plasma membrane. They contained typical prokaryotic ribosomes and fibrillar DNA-like strands. No additional internal structure has been observed. Based on the lack of cell wall and the cellular localization, the intracellular microorganism is considered as a Mycoplasma-like organism.

Possible roles of amyloid intracellular domain of amyloid precursor protein

  • Chang, Keun-A;Suh, Yoo-Hun
    • BMB Reports
    • /
    • v.43 no.10
    • /
    • pp.656-663
    • /
    • 2010
  • Amyloid precursor protein (APP), which is critically involved in the pathogenesis of Alzheimer's disease (AD), is cleaved by gamma/epsilon-secretase activity and results in the generation of different lengths of the APP Intracellular C-terminal Domain (AICD). In spite of its small size and short half-life, AICD has become the focus of studies on AD pathogenesis. Recently, it was demonstrated that AICD binds to different intracellular binding partners ('adaptor protein'), which regulate its stability and cellular localization. In terms of choice of adaptor protein, phosphorylation seems to play an important role. AICD and its various adaptor proteins are thought to take part in various cellular events, including regulation of gene transcription, apoptosis, calcium signaling, growth factor, and $NF-{\kappa}B$ pathway activation, as well as the production, trafficking, and processing of APP, and the modulation of cytoskeletal dynamics. This review discusses the possible roles of AICD in the pathogenesis of neurodegenerative diseases including AD.

Targeting of Nuclear Encoded Proteins to Chloroplasts: a New Insight into the Mechanism

  • Lee, Yong-Jik;Kim, Yong-Woo;Pih, Kyeong-Tae;Hwang, Inhwan
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.5
    • /
    • pp.407-409
    • /
    • 2000
  • Outer envelope membrane proteins of chloroplasts encoded by the nuclear genome are transported without the N-terminal transit peptide. Here, we investigated the targeting mechanism of AtOEP7, an Arabidopsis homolog of small outer envelope membrane proteins in vivo. AtOEP7 was expressed transiently in protoplasts or stably in transgenic plants as fusion proteins with GFP. In both cases AtOEP7:GFP was targeted to the outer envelope membrane when assayed under a fluorescent microscope or by Western blot analysis. Except the transmembrane domain, deletions of the N- or C-terminal regions of AtOEP7 did not affect targeting although a region closed to the C-terminal side of the transmembrane domain affected the targeting efficiency. Targeting experiments with various hybrid transmembrane mutants revealed that the amino acid sequence of the transmembrane domain determines the targeting specificity The targeting mechanism was further studied using a fusion protein, AtOEP7:NLS:GFP, that had a nuclear localization signal. AtOEP7:NLS:GFP was efficiently targeted to the chloroplast envelope despite the presence of the nuclear localization signal. Taken together, these results suggest that the transmembrane domain of AtOEP7 functions as the sole determinant of targeting specificity and that AtOEP7 may be associated with a cytosolic component during translocation to the chloroplast envelope membrane.

  • PDF

Development of intracellular organelle markers using modified glycolipid-binding peptides in mammalian cells (세포내 특정 소기관 타기팅 마커 개발을 위한 당지질-결합 펩타이드 변형 및 세포내 타기팅 분석)

  • Jun, Yong-Woo;Lee, Jin-A;Jang, Deok-Jin
    • Analytical Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.65-71
    • /
    • 2015
  • Intracellular organelles in eukaryotic cells play important roles in many cellular functions. Intracellular trafficking of many proteins to specific intracellular organelles is tightly regulated by various mechanisms in cells. Therefore, elucidating the targeting mechanism of novel markers for intracellular organelles is important for cellular physiology and pathology. In this study, we tried to identify the peptides which could bind to specific glycolipid in cellular membrane using GFP-fused glycolipid-binding peptides, and analyzed their cellular localization. As a result, we could identify mitochondria-, Golgi- or plasma membrane-targeting peptides. Furthermore, we found that the plasma membrane-targeting peptide was localized to the plasma membrane via electrostatic interactions. Thus, our results suggest that various glycolipid-binding peptides could be used as intracellular organelles markers.

Ferment Red Ginseng Suppresses the Expression of Matrix Metalloproteinases in UVA-irradiated Human Dermal Fibroblast Cells (발효홍삼의 인간진피섬유모세포에서 UVA로 유도한 염증 및 기질단백분해효소 발현 억제 효능)

  • Lee, Keun-Hyeun;Jeong, Seung-Il;Lee, Chang-Hyun;Shin, Sang Woo;Jeong, Han-Sol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.31 no.2
    • /
    • pp.105-110
    • /
    • 2017
  • Prolonged exposure to solar ultraviolet A (UVA) radiation has been known to cause premature skin aging (photo-aging). UVA radiation generates ROS thereby induce degenerative changes of skin such as degradation of dermal collagen, elastic fibers. Matrix metalloproteinases (MMPs), the proteolytic enzymes have been implicated as a major player in the development of UVA-induced photo-aging. Many studies have been conducted to block the harmful effects of UV radiation on the skin. Recently, we are interested in the availability of fermented red ginseng (FRG) as natural matrix metalloproteinases inhibitors (MMPIs). The efficacy difference between red ginseng and FRG has been compared. Both RG and FRG have no cytotoxic effects below the concentration of $300{\mu}g/ml$. Human dermal fibroblasts (HDFs) were pretreated with FRG or RG for 24h, followed by irradiation of UVA. Then, we measured the intracellular ROS production and the expression of MMP, $IL-1{\beta}$ at the mRNA level. We also examined the intracellular localization of $NF-{\kappa}B$ and MMP-9 on the FRG or RG treated and UVA-irradiated HDFs. FRG decreased the intracellular ROS production elicited by UVA. In addition, FRG decreased the mRNA expression of MMP-3, MMP-9, and $IL-1{\beta}$ more efficiently than RG. Furthermore, FRG suppressed the nuclear localization of $NF-{\kappa}B$, and the expression of MMP-9. Taken together, our results suggest that FRG is promising agents to prevent UVA-induced photo-aging by suppressing MMP expression and inflammation.

CBP-Mediated Acetylation of Importin α Mediates Calcium-Dependent Nucleocytoplasmic Transport of Selective Proteins in Drosophila Neurons

  • Cho, Jae Ho;Jo, Min Gu;Kim, Eun Seon;Lee, Na Yoon;Kim, Soon Ha;Chung, Chang Geon;Park, Jeong Hyang;Lee, Sung Bae
    • Molecules and Cells
    • /
    • v.45 no.11
    • /
    • pp.855-867
    • /
    • 2022
  • For proper function of proteins, their subcellular localization needs to be monitored and regulated in response to the changes in cellular demands. In this regard, dysregulation in the nucleocytoplasmic transport (NCT) of proteins is closely associated with the pathogenesis of various neurodegenerative diseases. However, it remains unclear whether there exists an intrinsic regulatory pathway(s) that controls NCT of proteins either in a commonly shared manner or in a target-selectively different manner. To dissect between these possibilities, in the current study, we investigated the molecular mechanism regulating NCT of truncated ataxin-3 (ATXN3) proteins of which genetic mutation leads to a type of polyglutamine (polyQ) diseases, in comparison with that of TDP-43. In Drosophila dendritic arborization (da) neurons, we observed dynamic changes in the subcellular localization of truncated ATXN3 proteins between the nucleus and the cytosol during development. Moreover, ectopic neuronal toxicity was induced by truncated ATXN3 proteins upon their nuclear accumulation. Consistent with a previous study showing intracellular calcium-dependent NCT of TDP-43, NCT of ATXN3 was also regulated by intracellular calcium level and involves Importin α3 (Imp α3). Interestingly, NCT of ATXN3, but not TDP-43, was primarily mediated by CBP. We further showed that acetyltransferase activity of CBP is important for NCT of ATXN3, which may acetylate Imp α3 to regulate NCT of ATXN3. These findings demonstrate that CBP-dependent acetylation of Imp α3 is crucial for intracellular calcium-dependent NCT of ATXN3 proteins, different from that of TDP-43, in Drosophila neurons.

Influence of calcium ion on host cell invasion and intracellular replication by Toxoplasma gondii

  • Song, Hyun-Ouk;Ahn, Myoung-Hee;Ryu, Jae-Sook;Min, Duk-Young;Joo, Kyoung-Hwan;Lee, Young-Ha
    • Parasites, Hosts and Diseases
    • /
    • v.42 no.4
    • /
    • pp.185-193
    • /
    • 2004
  • Toxoplasma gondii is an obligate intracellular protozoan parasite, which invades a wide range of hosts including humans. The exact mechanisms involved in its invasion are not fully understood. This study focused on the roles of $Ca^{2+}$ in host cell invasion and in T. gondii replication. We examined the invasion and replication of T. gondii pretreated with several calcium modulators, the conoid extrusion of tachyzoites. Calmodulin localization in T. gondii were observed using the immunogold method, and $Ca^{2+}$ levels in tachyzoites by confocal microscopy. In light microscopic observation, tachyzoites co-treated with A23187 and EGTA showed that host cell invasion and intracellular replication were decreased. The invasion of tachyzoites was slightly inhibited by the $Ca^{2+}$ channel blockers, bepridil and verapamil, and by the calmodulin antagonist, calmidazolium. We observed that calcium saline containing A23187 induced the extrusion of tachyzoite conoid. By immunoelectron microscopy, gold particles bound to anti-calmodulin or anti-actin mAb, were found to be localized on the anterior portion of tachyzoites. Remarkably reduced intracellular $Ca^{2+}$ was observed in tachyzoites treated with BAPTA/AM by confocal microscopy. These results suggest that host cell invasion and the intracellular replication of T. gondii tachyzoites are inhibited by the calcium ionophore, A23187, and by the extracellular calcium chelator, EGTA.