Browse > Article
http://dx.doi.org/10.5806/AST.2015.28.1.65

Development of intracellular organelle markers using modified glycolipid-binding peptides in mammalian cells  

Jun, Yong-Woo (Department of Ecological Science, College of Ecology and Environment, Kyungpook National University)
Lee, Jin-A (Department of Biological Science and Biotechnology, College of Life Science and Nano Technology, Hannam University)
Jang, Deok-Jin (Department of Ecological Science, College of Ecology and Environment, Kyungpook National University)
Publication Information
Analytical Science and Technology / v.28, no.1, 2015 , pp. 65-71 More about this Journal
Abstract
Intracellular organelles in eukaryotic cells play important roles in many cellular functions. Intracellular trafficking of many proteins to specific intracellular organelles is tightly regulated by various mechanisms in cells. Therefore, elucidating the targeting mechanism of novel markers for intracellular organelles is important for cellular physiology and pathology. In this study, we tried to identify the peptides which could bind to specific glycolipid in cellular membrane using GFP-fused glycolipid-binding peptides, and analyzed their cellular localization. As a result, we could identify mitochondria-, Golgi- or plasma membrane-targeting peptides. Furthermore, we found that the plasma membrane-targeting peptide was localized to the plasma membrane via electrostatic interactions. Thus, our results suggest that various glycolipid-binding peptides could be used as intracellular organelles markers.
Keywords
glycolipid-binding peptide; intracellular organelles; marker; plasma membrane; electrostatic interaction;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 T. Nilsson and G. Warren, Curr. Opin. Cell Biol., 6(4), 517-521 (1994).   DOI   ScienceOn
2 K. Bos, C. Wraight and K. K. Stanley, EMBO J, 12(5), 2219-2228 (1993).
3 D. J. Jang, S. W. Park and B. K. Kaang, BMB Rep., 42(1), 1-5 (2009).   DOI   ScienceOn
4 G. Di Paolo and P. De Camilli, Nature, 443(7112), 651-657 (2006).   DOI   ScienceOn
5 T. Yeung, G. E. Gilbert, J. Shi, J. Silvius, A. Kapus and S. Grinstein, Science, 319(5860), 210-213 (2008).   DOI   ScienceOn
6 K. H. Kim, Y. W. Jun, Y. Park, J. A. Lee, B. C. Suh, C. S. Lim, Y. S. Lee, B. K. Kaang and D. J. Jang, J Biol Chem., 289(37), 25797-25811 (2014).   DOI   ScienceOn
7 J. Kanaani, G. Patterson, F. Schaufele, J. Lippincott-Schwartz and S. Baekkeskov, J. Cell Sci., 121(Pt 4), 437-449 (2008).   DOI   ScienceOn
8 G. S. Baillie, E. Huston, G. Scotland, M. Hodgkin, I. Gall, A. H. Peden, C. MacKenzie, E. S. Houslay, R. Currie, T. R. Pettitt, A. R. Walmsley, M. J. Wakelam, J. Warwicker and M. D. Houslay, J. Biol. Chem., 277(31), 28298-28309 (2002).   DOI   ScienceOn
9 Y. Ma and S. S. Taylor, J. Biol. Chem., 283(17), 11743-11751 (2008).   DOI   ScienceOn
10 R. Mahfoud, N. Garmy, M. Maresca, N. Yahi, A. Puigserver and J. Fantini, J. Biol. Chem., 277(13), 11292-11296 (2002).   DOI   ScienceOn
11 T. Matsubara, K. Iijima, M. Nakamura, T. Taki, Y. Okahata and T. Sato, Langmuir, 23(2), 708-714 (2007).   DOI   ScienceOn
12 N. H. Guo, H. C. Krutzsch, E. Negre, T. Vogel, D. A. Blake and D. D. Roberts, Proc. Natl. Acad Sci. U S A, 89(7), 3040-3044 (1992).   DOI   ScienceOn
13 J. S. Liang, B. M. Schreiber, M. Salmona, G. Phillip, W. A. Gonnerman, F. C. de Beer and J. D. Sipe, J. Lipid Res., 37(10), 2109-2116 (1996).