• Title/Summary/Keyword: Intracellular [$Ca^{2+}$]

Search Result 701, Processing Time 0.027 seconds

[Ca2+]-dependent Generation of Intracellular Reactive Oxygen Species Mediates Maitotoxin-induced Cellular Responses in Human Umbilical Vein Endothelial Cells

  • Yi, Sun-Ju;Kim, Kyung Hwan;Choi, Hyun Jung;Yoo, Je Ok;Jung, Hyo-Il;Han, Jeong-A;Kim, Young-Myeong;Suh, In Bum;Ha, Kwon-Soo
    • Molecules and Cells
    • /
    • v.21 no.1
    • /
    • pp.121-128
    • /
    • 2006
  • Maitotoxin (MTX) is known as one of the most potent marine toxins involved in Ciguatera poisoning, but intracellular signaling pathways caused by MTX was not fully understood. Thus, we have investigated whether intracellular reactive oxygen species (ROS) are involved in MTX-induced cellular responses in human umbilical vein endothelial cells. MTX induced a dose-dependent increase of intracellular [$Ca^{2+}$]. MTX stimulated the production of intracellular ROS in a dose- and time-dependent manner, which was suppressed by BAPTA-AM, an intracellular $Ca^{2+}$ chelator. Ionomycin also elevated the ROS production in a dose-dependent manner. MTX elevated transamidation activity in a time-dependent manner and the activation was largely inhibited by transfection of tissue transglutaminase siRNA. The activation of tissue transglutaminase and ERK1/2 by MTX was suppressed by BAPTA-AM or ROS scavengers. In addition, MTX-induced cell death was significantly delayed by BAPTA-AM or a ROS scavenger. These results suggest that [$Ca^{2+}$]-dependent generation of intracellular ROS, at least in part, play an important role in MTX-stimulated cellular responses, such as activation of tTGase, ERK phosphorylation, and induction of cell death, in human umbilical vein endothelial cells.

Effects of NaOCl on the Intracellular Calcium Concentration in Rat Dorsal Root Ganglion Neurons

  • Lee, Hae-In;Chun, Sang-Woo
    • International Journal of Oral Biology
    • /
    • v.35 no.3
    • /
    • pp.129-135
    • /
    • 2010
  • Recent studies have implicated reactive oxygen species (ROS) as determinants of the pathological pain caused by the activation of peripheral neurons. It has not been elucidated, however, how ROS activate the primary sensory neurons in the pain pathway. In this study, calcium imaging was performed to investigate the effects of NaOCl, a ROS donor, on the intracellular calcium concentration ($[Ca^{2+}]i$) in acutely dissociated dorsal root ganglion (DRG) neurons. DRG was sequentially treated with 0.2 mg/ml of both protease and thermolysin, and single neurons were then obtained by mechanical dissociation. The administration of NaOCl then caused a reversible increase in the $[Ca^{2+}]i$, which was inhibited by pretreatment with phenyl-N-tertbuthylnitrone (PBN) and isoascorbate, both ROS scavengers. The NaOCl-induced $[Ca^{2+}]i$ increase was suppressed both in a calcium free solution and after depletion of the intracellular $Ca^{2+}$ pool by thapsigargin. Additionally, this increase was predominantly blocked by pretreatment with the transient receptor potential (TRP) antagonists, ruthenium red ($50\;{\mu}M$) and capsazepine ($10\;{\mu}M$). Collectively, these results suggest that an increase in the intracellular calcium concentration is produced from both extracellular fluid and the intracellular calcium store, and that TRP might be involved in the sensation of pain induced by ROS.

Effects of Bradykinin on Intracellular Calcium Transients in Cardiac Myocytes

  • Park, Choon-Ok;Kim, Yang-Mi;Han, Jae-Hee;Allen, David G.;Hong, Seong-Geun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.6
    • /
    • pp.615-621
    • /
    • 1999
  • In spite many evidences has supported the cardioprotective effect of bradykinin, its direct effects at the cell level are still under question. We investigated the both effects of bradykinin (BK) on $Ca^{2+}-related$ ionic currents using whole cell voltage clamp technique in rabbit cardiomyocytes and on the intracellular $Ca^{2+}$ transient using calcium sensitive fluorescence dye, indo-1AM. Simultaneously with recording intracellular $Ca^{2+}$ transients, cell contractility was estimated from the changes in length of the electrical stimulated rat cardiac myocytes. L-type $Ca^{2+}$ current decreased by bradykinin at the entire voltage range. Inward tail current increased initially up to its maximum about 4 min after exposing myocytes to BK, and then gradually decreased again by further exposure to BK. This tail current decreased remarkably at washing BK off but slowly recovered ca. 20 min later. The change in cell contractility was similar to that in tail current showing initial increase followed by gradual decrease. Removal of BK brought remarkable decrease in contractility, which was recovered $15{\sim}20$ min after cessation of electrical stimulation. Bradykinin increased $Ca^{2+}$ transient initially but after some time $Ca^{2+}$ transient also decreased coincidentally with contractility. From these results, it is suggested that bradykinin exerts directly its cardioprotective effect on the single myocytes by decreasing the intracellular $Ca^{2+}$ level followed by an initial increase in $Ca^{2+}$ transient.

  • PDF

Production of Intracellular Calcium Oscillation by Phospholipase C Zeta Activation in Mammalian Eggs

  • Yoon, Sook-Young;Kang, Da-Won
    • Development and Reproduction
    • /
    • v.15 no.3
    • /
    • pp.197-204
    • /
    • 2011
  • Egg activation is a crucial step that initiates embryo development upon breaking the meiotic arrest. In mammalian, egg activation is accomplished by fusion with sperm, which induces the repeated intracellular $Ca^{2+}$- increases ($[Ca^{2+}]_i$ oscillation). Researches in mammals support the view of the $[Ca^{2+}]_i$ oscillation and egg activation is triggered by a protein factor from sperm that causes $[Ca^{2+}]_i$ release from endoplasmic reticulum, intracellular $[Ca^{2+}]_i$ store, by persistently activation of phosphoinositide pathway. It represents that the sperm factor generates production of inositol trisphosphate ($IP_3$). Recently a sperm specific form of phospholipase C zeta, referred to as PLCZ was identified. In this paper, we confer the evidence that PLCZ represent the sperm factor that induces $[Ca^{2+}]_i$ oscillation and egg activation and discuss the correlation of PLCZ and infertility.

Role of Nitric Oxide in the Lovastatin-Induced Stimulation of Melanin Synthesis in B16 Melanoma Cells (B16 흑색종세포에서 로바스타틴에 의한 멜라닌 합성 촉진효과에 미치는 산화질소의 역할)

  • Lee, Yong Soo
    • YAKHAK HOEJI
    • /
    • v.57 no.6
    • /
    • pp.388-393
    • /
    • 2013
  • Previously, we have reported that lovastatin, an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, increased melanin synthesis through intracellular $Ca^{2+}$ release in B16 cells. In this study we investigated the possible involvement of nitric oxide (NO) in the mechanism of lovastatin-induced melanogenesis. Lovastatin elevated NO formation in a dose-dependent manner. Treatment with mevalonate, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP), precursors of cholesterol, did not significantly alter the lovastatin-induced NO production, suggesting that inhibition of cholesterol metabolism may not be involved in the mechanism of this action of lovastatin. Both NO formation and melanogenesis induced by lovastatin was significantly suppressed by treatment with $N^G$-nitro-L-arginine methyl ester (L-NAME) and 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylinidazoline-1-oxyl-3-oxide (cPTIO), an inhibitor of NO synthase and a NO scavenger, respectively. The lovastatin-induced NO production was significantly affected not by EGTA, an extracellular $Ca^{2+}$ chelator, but by an intracellular $Ca^{2+}$ chelator (BAPTA/AM) and intracellular $Ca^{2+}$ release blockers (dantrolene and TMB-8). Taken together, these results suggest that lovastatin may induce melanogenesis through NO formation mediated by intracellular $Ca^{2+}$ release in B16 cells. These results further suggest that lovastatin may be a good candidate for the therapeutic application of various hypopigmentation disorders.

Depression of $Ca^{2+}$ Influx in Complement C5a-stimulated Neutrophils by Calmodulin Inhibitors

  • Ham, Dong-Suk;Kim, Hyun-Ho;Han, Eun-Sook;Lee, Chung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.1
    • /
    • pp.109-117
    • /
    • 1998
  • Role of $Ca^{2+}$/calmodulin complex in intracellular $Ca^{2+}$ mobilization in neutrophils has not been clearly elucidated. In this study, effects of chlorpromazine, trifluoperazine and imipramine on the intracellular $Ca^{2+}$ mobilization, including $Ca^{2+}$ influx, in C5a-activated neutrophils were investigated. Complement C5a- stimulated superoxide production and myeloperoxidase release in neutrophils were inhibited by chlorpromazine, trifluoperazine and imipramine, except no effect of imipramine on myeloperoxidase release. A C5a-elicited elevation of [$Ca^{2+}$]i in neutrophils was inhibited by chlopromazine, trifluoperazine, imipramine, staurosporine, genistein, EGTA, and verapamil but not affected by pertussis toxin. The intracellular $Ca^{2+}$ release in C5a-activated neutrophils was not affected by chlorpromazine and imipramine. Chlorpromazine and imipramine inhibited $Mn^{2+}$ influx by C5a-activated neutrophils. Thapsigargin-evoked $Ca^{2+}$ entry was inhibited by chlorpromazine, trifluoperazine, imipramine, genistein, EGTA and verapamil, while the effect of staurosporine was not detected. The results suggest that $Ca^{2+}$/calmodulin complex is involved in the activation process of neutrophils. The depressive action of calmodulin inhibitors on the elevation of cytosolic $Ca^{2+}$ level in C5a-activated neutrophils appears to be accomplished by inhibition of $Ca^{2+}$ influx from the extracellular medium.

  • PDF

Control of $Ca^{2+}$- Influx by $Ca^{2+}$/Calmodulin Dependent Protein Kinase II in the Activation of Mouse Eggs

  • Yoon, Sook-Young;Kang, Da-Won;Bae, In-Ha
    • Development and Reproduction
    • /
    • v.15 no.1
    • /
    • pp.31-39
    • /
    • 2011
  • Change in intracellular $Ca^{2+}$-concentration ($[Ca^{2+}]_i$) is an essential event for egg activation and further development. $Ca^{2+}$ ion is originated from intracellular $Ca^{2+}$-store via inositol 1,4,5-triphosphate receptor and/or $Ca^{2+}$ influx via $Ca^{2+}$ channel. This study was performed to investigate whether changes in $Ca^{2+}$/calmodulin dependent protein kinase II (CaM KII) activity affect $Ca^{2+}$ influx during artificial egg activation with ethanol using $Ca^{2+}$ monitoring system and whole-cell patch clamp technique. Under $Ca^{2+}$ ion-omitted condition, $Ca^{2+}$-oscillation was stopped within 30 min post microinjection of porcine sperm factor, and ethanol-induced $Ca^{2+}$ increase was reduced. To investigate the role of CaM KII known as an integrator of $Ca^{2+}$- oscillation during mammalian egg fertilization, CaM KII activity was tested with a specific inhibitor KN-93. In the eggs treated with KN-93, ethanol failed to induce egg activation. In addition, KN-93 inhibited inward $Ca^{2+}$ current ($I_{Ca}$) in a time-dependent manner in whole-cell configuration. Immunostaining data showed that the voltage-dependent $Ca^{2+}$ channels were distributed along the plasma membrane of mouse egg and 2-cell embryo. From these results, we suggest that $Ca^{2+}$ influx during fertilization might be controlled by CaM KII activity.

Dust particles-induced intracellular Ca2+ signaling and reactive oxygen species in lung fibroblast cell line MRC5

  • Lee, Dong Un;Ji, Min Jeong;Kang, Jung Yun;Kyung, Sun Young;Hong, Jeong Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.3
    • /
    • pp.327-334
    • /
    • 2017
  • Epidemiologic interest in particulate matter (PM) is growing particularly because of its impact of respiratory health. It has been elucidated that PM evoked inflammatory signal in pulmonary epithelia. However, it has not been established $Ca^{2+}$ signaling mechanisms involved in acute PM-derived signaling in pulmonary fibroblasts. In the present study, we explored dust particles PM modulated intracellular $Ca^{2+}$ signaling and sought to provide a therapeutic strategy by antagonizing PM-induced intracellular $Ca^{2+}$ signaling in human lung fibroblasts MRC5 cells. We demonstrated that PM10, less than $10{\mu}m$, induced intracellular $Ca^{2+}$ signaling, which was mediated by extracellular $Ca^{2+}$. The PM10-mediated intracellular $Ca^{2+}$ signaling was attenuated by antioxidants, phospholipase blockers, polyADPR polymerase 1 inhibitor, and transient receptor potential melastatin 2 (TRPM2) inhibitors. In addition, PM-mediated increases in reactive oxygen species were attenuated by TRPM2 blockers, clotrimazole (CLZ) and N-(p-amylcinnamoyl) anthranilic acid (ACA). Our results showed that PM10 enhanced reactive oxygen species signal by measuring DCF fluorescence and the DCF signal attenuated by both TRPM2 blockers CLZ and ACA. Here, we suggest functional inhibition of TRPM2 channels as a potential therapeutic strategy for modulation of dust particle-mediated signaling and oxidative stress accompanying lung diseases.

Pharmacological Evidence that Cromakalim Inhibits $Ca^{2+}$ Release from Intracellular Stores in Porcine Coronary Artery

  • Rhim, Byung-Yong;Hong, Sun-Hwa;Kim, Chi-Dae;Lee, Won-Suk;Hong, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.1
    • /
    • pp.27-34
    • /
    • 1997
  • In the present study, it was aimed to further indentify the intracellular action mechansm of cromakalim and levcromakalim in the porcine coronary artery. In intact porcine coronary arterial strips loaded with fura-2/AM, acetylcholine caused an increase in intracellular free $Ca^{2+}$ $([Ca^{2+}]_i)$ in association with a contraction in a concentration-dependent manner. Cromakalim (1 ${\mu}M$) caused a reduction in acetylcholine-induced increased $[Ca^{2+}]_i$ not only in the mormal physiological salt solution (PSS) but also in $Ca^{2+}$-free PSS (containing 1 mM EGTA). In the skinned strips prepared by exposure of tissue to 20 .${\mu}M$ B-escin, inositol 1,4,5-trisphosphate ($IP_3$) evoked an increase in $[Ca^{2+}]_i$, but it was without effect on the intact strips. The $IP_3$-induced increase in $[Ca^{2+}]_i$ was inhibited by cromakalim by 78% and levcromakalim by 59% (1 .${\mu}M$, each). Pretreatment with glibenclamide (a blocker of ATP-sensitive $K^+$ channels, 10 .${\mu}M$) and apamin (a blocker of small conductance $Ca^{2+}$-activated $K^+$ channels, 1 .${\mu}M$) strongly blocked the effect of cromakalim and levcromakalim. However, charybdotoxin (a blocker of large conductance $Ca^{2+}$-activated $K^+$ channels, 1 .${\mu}M$) was without effect. In addition, cromakalim inhibited the $GTP{\gamma}S$ (100 .${\mu}M$, non-hydrolysable analogue of GTP)-induced increase in $[Ca^{2+}]_i$. Based on these results, it is suggested that cromakalim and levcromakalim exert a potent vasorelaxation, in part, by acting on the $K^+$ channels of the intracellular sites (e.g., sarcoplasmic reticulum membrane), thereby, resulting in decrease in release of $Ca^{2+}$ from the intracellular storage site.

  • PDF

Role of Ca2+-activated Cl- Channels in the Stimulation of Melanin Synthesis Induced by Cyclosporin A in B16 Melanoma Cells (B16 흑색종세포에서 싸이클로스포린 A에 의한 멜라닌 합성 촉진효과에 미치는 칼슘-활성 염소 통로의 역할)

  • Lee, Yong Soo
    • YAKHAK HOEJI
    • /
    • v.59 no.4
    • /
    • pp.177-183
    • /
    • 2015
  • The mechanism of melanogenesis induced by cyclosporin A (CsA) was investigated in B16 melanoma cells. CsA stimulated the production of melanin in a dose-dependent manner in the cells. In addition, CsA increased intracellular $Ca^{2+}$ concentration in a dose-related fashion. Treatment with BAPTA/AM, an intracellular $Ca^{2+}$ chelator significantly inhibited the CsA-induced intracellular melanin synthesis. CsA profoundly induced $Cl^-$ efflux, which was significantly blocked by niflumic acid (NFA) and flufenamic acid (FFA), specific and nonspecific inhibitors of $Ca^{2+}$-activated $Cl^-$ channels (CaCCs), respectively. Furthermore, these inhibitors of CaCCs significantly inhibited the CsA-induced stimulation of melanin synthesis. Taken together, these results suggest that the activation of CaCCs may play an important role in the CsA-induced stimulation of melanin synthesis in B16 cells. These results further suggest that CaCCs may be a good target for the management of hyperpigmentation of the skin reported in the patients treated with CsA.