Role of Nitric Oxide in the Lovastatin-Induced Stimulation of Melanin Synthesis in B16 Melanoma Cells

B16 흑색종세포에서 로바스타틴에 의한 멜라닌 합성 촉진효과에 미치는 산화질소의 역할

  • Received : 2013.09.06
  • Accepted : 2013.10.23
  • Published : 2013.12.31

Abstract

Previously, we have reported that lovastatin, an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, increased melanin synthesis through intracellular $Ca^{2+}$ release in B16 cells. In this study we investigated the possible involvement of nitric oxide (NO) in the mechanism of lovastatin-induced melanogenesis. Lovastatin elevated NO formation in a dose-dependent manner. Treatment with mevalonate, farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP), precursors of cholesterol, did not significantly alter the lovastatin-induced NO production, suggesting that inhibition of cholesterol metabolism may not be involved in the mechanism of this action of lovastatin. Both NO formation and melanogenesis induced by lovastatin was significantly suppressed by treatment with $N^G$-nitro-L-arginine methyl ester (L-NAME) and 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylinidazoline-1-oxyl-3-oxide (cPTIO), an inhibitor of NO synthase and a NO scavenger, respectively. The lovastatin-induced NO production was significantly affected not by EGTA, an extracellular $Ca^{2+}$ chelator, but by an intracellular $Ca^{2+}$ chelator (BAPTA/AM) and intracellular $Ca^{2+}$ release blockers (dantrolene and TMB-8). Taken together, these results suggest that lovastatin may induce melanogenesis through NO formation mediated by intracellular $Ca^{2+}$ release in B16 cells. These results further suggest that lovastatin may be a good candidate for the therapeutic application of various hypopigmentation disorders.

Keywords

References

  1. Romero-Graillet, C., Aberdam, E., Biagoli, N., Massabni, W., Ortonne, J. P. and Ballotti, R. : Ultraviolet B radiation acts through the nitric oxide and cGMP signal transduction pathway to stimulate melanogenesis in human melanocytes. J. Biol. Chem. 271, 28052 (1996). https://doi.org/10.1074/jbc.271.45.28052
  2. Schauer, E., Trautinger, F., Kock, A., Schwarz, A., Bhardwaj, R., Simon, M., Ansel, J. C., Schwarz, T. and Luger, T. A. : Proopiomelanocortin-derived peptides are synthesized and released by human keratinocytes. J. Clin. Invest. 93, 2258 (1994). https://doi.org/10.1172/JCI117224
  3. Thody, A. J. and Graham, A. : Does a-MSH have a role in regulating skin pigmentation in humans. Pigment Cell Res. 11, 265 (1998). https://doi.org/10.1111/j.1600-0749.1998.tb00735.x
  4. Imokawa, G., Miyagishi, M. and Yada, Y. : Endothelin-1 as a new melanogen: coordinated expression of its gene and the tyrosinase gene in UVB-exposed human epidermis. J. Invest. Dermatol. 105, 32 (1995). https://doi.org/10.1111/1523-1747.ep12312500
  5. Nordlund, J. J., Collins, C. E. and Rheins, L. A. : Prostaglandin E2 and D2 but not MSH stimulate the proliferation of pigment cells in the pinnal epidermis of the DBA/2 mouse. J. Invest. Dermatol. 86, 433 (1986). https://doi.org/10.1111/1523-1747.ep12285717
  6. Yoshida, M., Takahashi, Y. and Inoue, S. : Histamine induces melanogenesis and morphologic changes by protein kinase A activation via H2 receptors in human normal melanocytes. J. Invest. Dermatol. 114, 334 (2000). https://doi.org/10.1046/j.1523-1747.2000.00874.x
  7. Eller, M. S., Yaar, M. and Gilchrest, B. A. : DNA damage and melanogenesis. Nature 372, 413 (1994). https://doi.org/10.1038/372413a0
  8. Schallreuter, K. U., Kothari, S., Chavan, B. and Spencer, J. D. : Regulation of melanogenesis-controversies and new concepts. Exp. Dermatol. 17, 395 (2008). https://doi.org/10.1111/j.1600-0625.2007.00675.x
  9. Abdel-Malek, Z., Swope, V. B., Suzuki, I., Akcali, C., Harriger, M. D., Boyce, S. T., Urabe, K. and Hearing, V. J. : Mitogenic and melanogenic stimulation of normal human melanocytes by melanotropic peptides. Proc. Natl. Acad. Sci. USA 92, 1789 (1995). https://doi.org/10.1073/pnas.92.5.1789
  10. Sasaki, M., Horikoshi, T., Uchiwa, H. and Miyachi, Y. : Upregulation of tyrosinase gene by nitric oxide in human melanocytes. Pigment Cell Res. 13, 248 (2000). https://doi.org/10.1034/j.1600-0749.2000.130406.x
  11. Alderton, W. K., Cooper, C. E. and Knowles, R. G. : Nitric oxide synthases: structure, function and inhibition. Biochem. J. 357, 593 (2001). https://doi.org/10.1042/0264-6021:3570593
  12. Novellino, L., d'Ischia, M. and Prota, G. : Nitric oxide-induced oxidation of 5,6-dihydroxyindole and 5,6-dihydroxyindole- 2- carboxylic acid under aerobic conditions: non-enzymatic route to melanin pigments of potential relevance to skin (photo)protection. Biochim. Biophys. Acta 1425, 27 (1998). https://doi.org/10.1016/S0304-4165(98)00060-9
  13. Schlossmann, J., Ammendola, A., Ashman, K., Zong, X., Huber, A., Neubauer, G., Wang, G. X., Allescher, H. D., Korth, M. and Wilm, M. : Regulation of intracellular calcium by a signalling complex of IRAG, $IP_{3}$ receptor and cGMP kinase I?. Nature 404, 197 (2000). https://doi.org/10.1038/35004606
  14. Lopez-Pedrera, C., Ruiz-Limon, P., Valverde-Estepa, A., Barbarroja, N. and Rodriguez-Ariza, A. : To cardiovascular disease and beyond: new therapeutic perspectives of statins in autoimmune diseases and cancer. Curr. Drug Targets 13, 829 (2012). https://doi.org/10.2174/138945012800564112
  15. Schallreuter, K. U., Hasse, S., Rokos, H., Chavan, B., Shalbaf, M., Spencer, J. D. and Wood, J. M. : Cholesterol regulates melanogenesis in human epidermal melanocytes and melanoma cells. Exp. Dermatol. 18, 680 (2009). https://doi.org/10.1111/j.1600-0625.2009.00850.x
  16. Galus, R., Niderla, J., Sladowski, D., Sajjad, E., Wlodarski, K. and Jozwiak, J. : Fluvastatin increases tyrosinase synthesis induced by a-melanocyte-stimulating hormone in B16F10 melanoma cells. Pharmacol. Rep. 62, 164 (2010). https://doi.org/10.1016/S1734-1140(10)70253-X
  17. Lee, Y. S. : Role of intracellular $Ca^{2+}$ in the lovastatin-induced stimulation of melanin synthesis in B16 melanoma cells. Yakhak Hoeji 57, 24 (2013).
  18. Lampiao, F., Strijdom, H. and Plessis, S. S. : Direct nitric oxide measurement in human spermatozoa: flow cytometric analysis using the fluorescent probe, diaminofluorescein. Int. J. Androl. 29, 564 (2006). https://doi.org/10.1111/j.1365-2605.2006.00695.x
  19. Pentikainen, P. J., Saraheimo, M., Schwartz, J. I., Amin, R. D., Schwartz, M. S., Brunner-Ferber, F. and Rogers, J. D. : Comparative pharmacokinetics of lovastatin, simvastatin and pravastatin in humans. J. Clin. Pharmacol. 32, 136 (1992). https://doi.org/10.1002/j.1552-4604.1992.tb03818.x
  20. Laufs, U., La Fata, V., Plutzky, J. and Liao, J. K. : Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation 97, 1129 (1998). https://doi.org/10.1161/01.CIR.97.12.1129
  21. Yin, H., Shi, Z. G., Yu, Y. S., Hu, J., Wang, R., Luan, Z. P. and Guo, D. H. : Protection against osteoporosis by statins is linked to a reduction of oxidative stress and restoration of nitric oxide formation in aged and ovariectomized rats. Eur. J. Pharmacol. 674, 200 (2012). https://doi.org/10.1016/j.ejphar.2011.11.024
  22. Habara, K., Hamada, Y., Yamada, M., Tokuhara, K., Tanaka, H., Kaibori, M., Kamiyama, Y., Nishizawa, M., Ito, S. and Okumura, T. : Pitavastatin upregulates the induction of iNOS through enhanced stabilization of its mRNA in proinflammatory cytokine-stimulated hepatocytes. Nitric Oxide 18, 19 (2008). https://doi.org/10.1016/j.niox.2007.08.005
  23. Chou, T. C., Lin, Y. F., Wu, W. C. and Chu, K. M. : Enhanced nitric oxide and cyclic GMP formation plays a role in the antiplatelet activity of simvastatin. Br. J. Pharmacol. 153, 1281 (2008).
  24. Datar, R., Kaesemeyer, W. H., Chandra, S., Fulton, D. J. and Caldwell, R. W. : Acute activation of eNOS by statins involves scavenger receptor-B1, G protein subunit Gi, phospholipase C and calcium influx. Br. J. Pharmacol. 160, 1765 (2010). https://doi.org/10.1111/j.1476-5381.2010.00817.x
  25. Tsatmali, M., Graham, A., Szatkowski, D., Ancans, J., Manning, P., McNeil, C. J., Graham, A. M. and Thody, A. J. : $\alpha$- melanocyte-stimulating hormone modulates nitric oxide production in melanocytes. J. Invest. Dermatol. 114, 520 (2000). https://doi.org/10.1046/j.1523-1747.2000.00879.x
  26. Sowden, H. M., Naseem, K. M. and Tobin, D. J. : Differential expression of nitric oxide synthases in human scalp epidermal and hair follicle pigmentary units: implications for regulation of melanogenesis. Br. J. Dermatol. 153, 301 (2005). https://doi.org/10.1111/j.1365-2133.2005.06718.x
  27. Choi, Y. J., Uehara, Y., Park, J. Y., Chung, K. W., Ha, Y. M., Kim, J. M., Song, Y. M., Chun, P., Park, J. W., Moon, H. R. and Chung, H. Y. : Suppression of melanogenesis by a newly synthesized compound, MHY966 via the nitric oxide/protein kinase G signaling pathway in murine skin. J. Dermatol. Sci. 68, 164 (2012). https://doi.org/10.1016/j.jdermsci.2012.09.014
  28. Panich, U., Tangsupa-a-nan, V., Onkoksoong, T., Kongtaphan, K., Kasetsinsombat, K., Akarasereenont, P. and Wongkajornsilp, A. : Inhibition of UVA-mediated melanogenesis by ascorbic acid through modulation of antioxidant defense and nitric oxide system. Arch. Pharm. Res. 34, 811 (2011). https://doi.org/10.1007/s12272-011-0515-3
  29. Venema, R. C., Sayegh, H. S., Kent, J. D. and Harrison, D. G. : Identification, characterization, and comparison of the calmodulin-binding domains of the endothelial and inducible nitric oxide synthases. J. Biol. Chem. 271, 6435 (1996). https://doi.org/10.1074/jbc.271.11.6435