• Title/Summary/Keyword: Intracellular $Ca^{2+}$ mobilization

Search Result 84, Processing Time 0.02 seconds

Characteristics of Purinergic Receptor Expressed in 3T3-L1 Preadipocytes

  • Lee, Hyung-Joo;Baik, Joon-Heum;Kim, Min-Jeong;Kim, Na-Hyun;Kong, In-Deok
    • Biomedical Science Letters
    • /
    • v.15 no.4
    • /
    • pp.319-326
    • /
    • 2009
  • Extracellular ATP elicits diverse physiological effects by binding to the G-protein-coupled P2Y receptors on the plasma membrane. In addition to the short-term effects of extracellular nucleotides on cell functions, there is evidence that such purinergic signalling can have long-term effects on cell proliferation, differentiation and death. The 3T3-L1 cell line derived from mouse embryo is a well-established and commonly utilized in vitro model for adipocytes differentiation and function. However, the distributions and roles of P2Y subtypes are still unknown in the preadipocyte. In this study, we identified the distributions and roles of P2Y subtypes in preadipocyte using $Ca^{2+}$ imaging and realtime PCR. ATP increased the $[Ca^{2+}]_i$ in a concentration-dependent manner. ATP increased $Ca^{2+}$ in absence and/or presence of extracellular $Ca^{2+}$. Suramin, non-selective P2Y blocker, largely blocked the ATP-induced $Ca^{2+}$ response. U73122, a PLC inhibitor, completely inhibited $Ca^{2+}$ mobilization in 3T3-L1 cells. The mRNA expression by realtime PCR of P2Y subtypes was $P2Y_2:P2Y_5:P2Y_6=1.0:12.5:0.3$. In conclusion, we showed that $P2Y_5$ receptor is a dominant purinergic receptor in preadipocytes, and multiple P2Y receptors could involve in differentiation and migration via regulating of intracellular calcium concentration.

  • PDF

Inhibitory Effects of Ginsenoslde $Rg_3$ on Platelet Aggregation and its Mechanism of Action (Ginsenoside $Rg_3$의 혈소판 응집 억제 효과 및 그 작용기전에 관한 연구)

  • 이소라;박정일
    • Journal of Ginseng Research
    • /
    • v.21 no.2
    • /
    • pp.132-140
    • /
    • 1997
  • The effects of ginsenosides purified from red ginseng on platelet aggregation were investigated. Preincubation of washed platelets from rats with either ginsenoside Rg3, ginsenosides non-polar fraction (G-NPF), ginsenoside Rg1(Rg1) or ginsenosides polar fraction(G-PF) reduced the plytelet aggrelation induced by collagen in a dose-dependent manner, whereas ginsenoside Rg2 failed to inhibit the aggregation. Their IC50 values of Rg3, G-NPF, Rgl, and G-PF were 8.7$\pm$1.0, 150.3$\pm$0.1, 369.9$\pm$ 1.0, 606.211.3 $\mu\textrm{g}$/ml, respectively. Aggrelation induced by thrombin was also inhibited by Rg3 and G-NPF with IC50 being 5.2$\pm$ 1.1 and 66.5$\pm$0.8 $\mu\textrm{g}$/ml, respectively. The alterations of Intracellular Ca2+ concentration in platelets were monitored using fura-2 as a fluorescent Ca2+ indicator. Both Ca2+ release from internal stores and Ca2+ influx into cytosol were suppressed by Rg3. Rg3 also inhibited granular release of ATP and TXA2 formation induced by thrombin in a dose-dependent manner in the washed platelets. Rg3 also inhibited Aggregation and ATP release from human platelets induced by collagen to a similar extent as were observed in rat platelets. In conclusion, Rg3 is a Potent anti-aggregating component in ginsenosides and may exert its anti-aggrega1ing activity by decreasing TXAa formation and granular secretion in platelets, most likely by inhibiting Ca2+ influx and Ca2+ mobilization from intracellular stores. Thus ginseng may contribute to the prevention and treatment of thrombosis.

  • PDF

Contractile Action of Barium in the Rabbit Renal Artery (가토 신동맥 평활근에서 Barium의 수축작용)

  • Jeon, Byeong-Hwa;Kim, Sahng-Seop;Kim, Se-Hoon;Chang, Seok-Jong
    • The Korean Journal of Physiology
    • /
    • v.24 no.2
    • /
    • pp.293-303
    • /
    • 1990
  • The contractile action of barium $(Ba^{2+})$ was investigated in the arterial strip of rabbit renal artery. The helical strip of isolated renal artery was immersed in the Tris-buffered Tyrode's solution equilibrated with 100% $O_2$ at $37^{\circ}C$ and its isometric tension was measured. $Ba^{2+}-induced$ contraction of arterial strip was dose-dependent and its maximal tension corresponded to $92.1{\pm}4.5%$ of tension by $K^+(100\;mM)$. $Ba^{2+}-induced$ contraction did not show the tachyphylactic phenomenon in the normal Tyrode's solution. $Ba^{2+}$ induced the tonic contraction in the $Ca^{2+}-free$ tyrode's solution and that was increased by the extracellula addition of $Ca^{2+}$. During the repeated exposure of the same dose of $Ba^{2+}\;(10\;mM)$ in the $Ca^{2+}-free$ Tyrode's solution, $Ba^{2+}-induced$ contraction was progressively decreased. Even though the intracellular NE-and caffeine-sensitive $Ca^{2+}$ was depleted, $Ba^{2+}$ induced the tonic contraction. After the pretreatment of lanthnum or verapamil, $Ba^{2+}$ did not induce contraction. $Ba^{2+}-induced$contraction was suppressed by extracellular $K^+$ in the normal Tyrode's solution and that was dependent on $K^+$ concentration. Suppressive effect of $K^+\;(14\;mM)$ on the $Ba^{2+}-induced$ contraction was also dependent on the intracellular $Ca^{2+}$ concentration. From the above resuts, it is suggested that $Ba^{2+}$ activate indirectly the contractile process by promoting the mobilization of intracellular $Ca^{2+}$ and the influx of extracellular $Ca^{2+}$. It is also suggested that action of $Ba^{2+}$ on the $Ca^{2+}-activated$ $K^+$ channel can result in the depolarization of cell membrane in the rabbit renal artery.

  • PDF

Activation Mechanism of Arachidonic Acid in Human Neutrophil Function (사람 중성호성 백혈구의 기능에 있어서 Arachidonic Acid의 활성화 기전)

  • Sim, Jae-Kun;Lee, Chung-Soo;Shin, Yong-Kyoo;Lee, Kwang-Soo
    • The Korean Journal of Pharmacology
    • /
    • v.28 no.1
    • /
    • pp.91-102
    • /
    • 1992
  • In $Ca^{++}$ containing media, arachidonic acid markedly stimulated superoxide and $H_2O_2$ generation and activated NADPH oxidase. In $Ca^{++}$ free media, stimulatory action of arachidonic acid on NADPH oxidase was not detected. Arachidonic acid-stimulated respiratory burst was inhibited by EGTA, TMB-8, verapamil, diltiazem, nifedipine, dibucaine, lidocaine, CCCP, 2,4-dinitrophenol, sodium arsenate, chlorpromazine, theophylline, $HgCl_2$, PCMB and PCMBSA but not affected by tetrodotoxin, tetraethylammonium chloride and procaine. EGTA almost completely inhibited release of ${\beta}-glucuronidase$ by arachidonic acid and verapamil, CCCP and theophylline slightly inhibited it, whereas dibucaine did not show any significant effect. Arachidonic acid induced $Ca^{++}$ release from intact neutrophils and it was decreased by TMB-8. Arachidonic acid-induced elevation of intracellular free $Ca^{++}$ level was inhibited by EGTA and CCCP and slightly inhibited by TMB-8. Amount of intracellular free $Ca^{++}$ increased by either arachidonic acid plus verapamil or arachidonic acid plus dibucaine was greater than that by arachidonic acid alone. These results suggest that various changes of biochemical events may be implicated in the functional expression in neutrophils activated by arachidonic acid. Arachidonic acid appears to elevate cytosolic free $Ca^{++}$ level by stimulating $Ca^{++}$ release from intracellular $Ca^{++}$ storage sites. During activation of neutrophils, $Ca^{++}$ influx and efflux may be accomplished, simultaneously.

  • PDF

Calcium-Independent Acrosome Reaetion by Methyl Beta Cyclodextrin in Mouse Epididymal Sperm In Vitro (생쥐 부정소 정자의 첨체반응 유도의 Calcium 비의존성)

  • Choi, Jin-Kook;Gye, Myung-Chan
    • Development and Reproduction
    • /
    • v.5 no.1
    • /
    • pp.53-57
    • /
    • 2001
  • Sperm capacitation and acrosome reaction (AR) have been known to be Ca$^{2+}$-dependent events. Sperm capacitation accompanies with cholesterol efflux fiom plasma membrane, that eventually stimulates AR. However, whether the AR mediated by cholesterol efflux is Ca$^{2+}$ dependent has not been verified yet. Recently, methyl beta cyclodextrin (MBCD) was found to evoke AR by stimulating the cholesterol efflux fiom sperm membrane. In the present study, we examined the requirement of Ca$^{2+}$ in the MBCD-induced AR. During incubation of sperm in the bicarbonate buffered media MBCD increased AR in a dose-dependent manner regardless of the Ca$^{2+}$ presence. In the presence of low molar concentration of Ca$^{2+}$ (100 ${\mu}$M), MBCD-induced AR was slightly increased compared to Ca$^{2+}$-free condition. In the absence of Ca$^{2+}$ supplement, spontaneous AR was slightly increased during the incubation but inhibited by 100 ${\mu}$M EGTA. MBCD potentiated AR even the presence of EGTA. However, EGTA attenuated MBCD-induced AR, suagesting the functional involvement of intracellular Ca$^{2+}$ in the MBCD-induced AR. Taken together, it was suggested that cholesterol efflux from the sperm plasma membrane was sufficient for induction of AR even in the absence of extracellular Ca$^{2+}$and that a condition permissive for mobilization of intracellular Ca$^{2+}$ is important for MBCD-induced AR.

  • PDF

Inhibitory Effects of Scopoletin in Collagen-induced Human Platelet Aggregation (콜라겐으로 유도한 사람 혈소판 응집에 미치는 Scopoletin의 억제 효과)

  • Kwon, Hyuk-Woo;Shin, Jung-Hae;Park, Chang-Eun;Lee, Dong-Ha
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.1
    • /
    • pp.34-41
    • /
    • 2019
  • Platelet aggregation is essential for the formation of a hemostatic plug in the case of blood vessel damage. On the other hand, excessive platelet aggregation may cause cardiovascular disorders, such as thrombosis, atherosclerosis, and myocardial infarction. Scopoletin, which found in the root of plants in the genus Scopolia or Artemisia, has anti-coagulation and anti-malaria effects. This study examined the effects of scopoletin on human platelet aggregation induced by collagen. Scopoletin had anti-platelet effects via the down-regulation of thromboxane $A_2$ ($TXA_2$) production and intracellular $Ca^{2+}$ mobilization ($[Ca^{2+}]_i$), which are aggregation-inducing molecules produced in activated platelets. On the other hand, scopoletin increased both the cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) levels, which are known as intracellular $Ca^{2+}$-antagonists and aggregation-inhibiting molecules. In particular, scopoletin increased the potently cAMP level more than cGMP, which led to suppressed fibrinogen binding to ${\alpha}IIb/{\beta}_3$ in collagen-induced human platelet aggregation. In addition, scopoletin inhibited collagen-elevated adenosine triphosphate (ATP) release in a dose-dependent manner. The results suggest that aggregation amplification through granule secretion is inhibited by scopoletin. Therefore, scopoletin has potent anti-platelet effects and may have potential for the prevention of platelet-derived vascular diseases.

Alteration of Cytosolic Ca$^{2+}$ Signal by Cryopreservation in Pig Sperm (동결 보존에 의한 돼지 정자 세포질 칼슘 신호의 변화)

  • Lee, Sun-Woo;Li, Yu-Hua;Kim, Joon-Chul;Myung, Pyung-Keun;Park, Chang-Sik;Woo, Sun-Hee
    • YAKHAK HOEJI
    • /
    • v.50 no.6
    • /
    • pp.409-414
    • /
    • 2006
  • Although mammalian sperms are cryopreserved for in vitro fertilization a process of cryopreservation decreases the fertility. Acrosome reaction requires depolarization-induced Ca$^{2+}$ influx and Ca$^{2+}$ releases from the Ca$^{2+}$ stores. To examine whether the cellular Ca$^{2+}$ mobilization is altered by a sperm cryopreservation we compared cytosolic Ca$^{2+}$ signals between fresh and cryopreserved pig sperms using confocal Ca$^{2+}$ imaging. The magnitudes of depolarization induced Ca$^{2+}$ increases were significantly smaller in cryopreserved sperms. Exposures to 10 mM caffeine or 5 ${\mu}$M thapsigargin elicited less Ca$^{2+}$ increases in the cryopreserved sperms compared to fresh sperms. In addition, progesterone-trig-gered Ca$^{2+}$ rises, that are thought to enhance acrosome reaction, were completely abolished in the cryopreserved sperms. These results suggest that storage and(/or) release of Ca$^{2+}$ from the intracellular Ca$^{2+}$ stores in pig sperms are significantly impaired by the process of cryopreservation.

Antiplatelet Actions of 2-Bromo-3-(.3,5-tert-butyl-4-hydroxylphenyl)-1,4-naphthaleneflione (TPN2) (2-Bromo-3-(3,5-tert-butyl-4-hydroxylphenyl)-1,4-naphthalenedione (TPN2)의 항혈소판 작용)

  • 최소연;김민화;이수환;정이숙;백은주;유충규;문창현
    • Biomolecules & Therapeutics
    • /
    • v.7 no.3
    • /
    • pp.227-233
    • /
    • 1999
  • The effects of 2-bromo-3-(3,5-tert-butyl-4-hydroxylphenyl)-1,4-naphthalenedione(TPN2), a synthetic vitamin K derivative, on platelet aggregation and its action mechanisms were investigated in rat platelet. TPN2 inhibited the platelet aggregation induced by collagen($10\mu\textrm{g}$/ml), thrombin(0.1 U/ml), A23187($10\mu\textrm{M}$) and arachidonic acid($100\mu\textrm{M}$) in concentration-dependent manner with $IC_{50}$ values of 6.5$\pm$1.3, 59.3$\pm$4.5, 13.0$\pm$2.37 and 2.9$\pm$$1.0\mu\textrm{M}$, respectively. Collagen-induced serotonin release was significantly reduced by TPN2. The elevation of intracellular free $Ca^{2+}$ concentration ([$Ca^{2+}$]i) by collagen stimulation was greatly decreased by the pretreatment of TPN2, which was due to the inhibition of calcium release from intracellular store and influx from outside of the cell. TPN2 also significantly reduced the thromboxane $A_2$($TXA_2$) formation in a concentration-dependent manner. The collagen-induced arachidonic acid (AA) release in [$^3H$]-AA incorporated platelet, an indicative of the phospholipase $A_2$ activity, was decreased by TPN2 pretreatment. TPN2 significantly inhibited the activity of thromboxane synthase, but did not affect the cyclooxygenase activity. From these results. it is suggested that TPN2 exert its antiplatelet activity through the inhibition of the intra-cellular $Ca^{2+}$ mobilization and the decrease of the $TXA_2$ synthesis.

  • PDF

G Protein-Coupled Receptor Signaling in Gastrointestinal Smooth Muscle

  • Sohn, Uy-Dong;Kim, Dong-Seok;Murthy, Karnam S.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.4
    • /
    • pp.287-297
    • /
    • 2001
  • Contraction of smooth muscle is initiated by an increase in cytosolic $Ca^{2+}$ leading to activation of $Ca^{2+}$/ calmodulin-dependnet myosin light chain (MLC) kinase and phosphorylation of MLC. The types of contraction and signaling mechanisms mediating contraction differ depending on the region. The involvement of these different mechanisms varies depending on the source of $Ca^{2+}$ and the kinetic of $Ca^{2+}$ mobilization. $Ca^{2+}$ mobilizing agonists stimulate different phospholipases $(PLC-{\beta},\;PLD\;and\;PLA_2)$ to generate one or more $Ca^{2+}$ mobilizing messengers $(IP_3\;and\;AA),$ and diacylglycerol (DAG), an activator of protein kinase C (PKC). The relative contributions of $PLC-{\beta},\;PLA_2$ and PLD to generate second messengers vary greatly between cells and types of contraction. In smooth muscle cell derived form the circular muscle layer of the intestine, preferential hydrolysis of $PIP_2$ and generation of $IP_3$ and $IP_3-dependent\;Ca^{2+}$ release initiate the contraction. In smooth muscle cells derived from longitudinal muscle layer of the intestine, preferential hydrolysis of PC by PLA2, generation of AA and AA-mediated $Ca^{2+}$ influx, cADP ribose formation and $Ca^{2+}-induced\;Ca^{2+}$ release initiate the contraction. Sustained contraction, however, in both cell types is mediated by $Ca^{2+}-independent$ mechanism involving activation of $PKC-{\varepsilon}$ by DAG derived form PLD. A functional linkage between $G_{13},$ RhoA, ROCK, $PKC-{\varepsilon},$ CPI-17 and MLC phosphorylation in sustained contraction has been implicated. Contraction of normal esophageal circular muscle (ESO) in response to acetylcholine (ACh) is linked to $M_2$ muscarinic receptors activating at least three intracellular phospholipases, i.e. phosphatidylcholine-specific phospholipase C (PC-PLC), phospholipase D (PLD) and the high molecular weight (85 kDa) cytosolic phospholipase $A_2\;(cPLA_2)$ to induce phosphatidylcholine (PC) metabolism, production of diacylglycerol (DAG) and arachidonic acid (AA), resulting in activation of a protein kinase C (PKC)-dependent pathway. In contrast, lower esophageal sphincter (LES) contraction induced by maximally effective doses of ACh is mediated by muscarinic $M_3$ receptors, linked to pertussis toxin-insensitive GTP-binding proteins of the $G_{q/11}$ type. They activate phospholipase C, which hydrolyzes phosphatidylinositol bisphosphate $(PIP_2),$ producing inositol 1, 4, 5-trisphosphate $(IP_3)$ and DAG. $IP_3$ causes release of intracellular $Ca^{2+}$ and formation of a $Ca^{2+}$-calmodulin complex, resulting in activation of myosin light chain kinase and contraction through a calmodulin-dependent pathway.

  • PDF

Anti-thrombotic effects of ginsenoside Rk3 by regulating cAMP and PI3K/MAPK pathway on human platelets

  • Hyuk-Woo Kwon ;Jung-Hae Shin ;Man Hee Rhee ;Chang-Eun Park ;Dong-Ha Lee
    • Journal of Ginseng Research
    • /
    • v.47 no.6
    • /
    • pp.706-713
    • /
    • 2023
  • Background and objective: The ability to inhibit aggregation has been demonstrated with synthetically derived ginsenoside compounds G-Rp (1, 3, and 4) and ginsenosides naturally found in Panax ginseng 20(S)-Rg3, Rg6, F4, and Ro. Among these compounds, Rk3 (G-Rk3) from Panax ginseng needs to be further explored in order to reveal the mechanisms of action during inhibition. Methodology: Our study focused to investigate the action of G-Rk3 on agonist-stimulated human platelet aggregation, inhibition of platelet signaling molecules such as fibrinogen binding with integrin αIIbβ3 using flow cytometry, intracellular calcium mobilization, dense granule secretion, and thromboxane B2 secretion. In addition, we checked the regulation of phosphorylation on PI3K/MAPK pathway, and thrombin-induced clot retraction was also observed in platelets rich plasma. Key Results: G-Rk3 significantly increased amounts of cyclic adenosine monophosphate (cAMP) and led to significant phosphorylation of cAMP-dependent kinase substrates vasodilator-stimulated phosphoprotein (VASP) and inositol 1,4,5-trisphosphate receptor (IP3R). In the presence of G-Rk3, dense tubular system Ca2+ was inhibited, and platelet activity was lowered by inactivating the integrin αIIb/β3 and reducing the binding of fibrinogen. Furthermore, the effect of G-Rk3 extended to the inhibition of MAPK and PI3K/Akt phosphorylation resulting in the reduced secretion of intracellular granules and reduced production of TXA2. Lastly, G-Rk3 inhibited platelet aggregation and thrombus formation via fibrin clot. Conclusions and implications: These results suggest that when dealing with cardiovascular diseases brought upon by faulty aggregation among platelets or through the formation of a thrombus, the G-Rk3 compound can play a role as an effective prophylactic or therapeutic agent.