DOI QR코드

DOI QR Code

Inhibitory Effects of Scopoletin in Collagen-induced Human Platelet Aggregation

콜라겐으로 유도한 사람 혈소판 응집에 미치는 Scopoletin의 억제 효과

  • Kwon, Hyuk-Woo (Department of Biomedical Laboratory Science, Far East University) ;
  • Shin, Jung-Hae (Department of Biomedical Laboratory Science, Far East University) ;
  • Park, Chang-Eun (Department of Biomedical Laboratory Science, Molecular Diagnostics Research Institute, Namseoul University) ;
  • Lee, Dong-Ha (Department of Biomedical Laboratory Science, Molecular Diagnostics Research Institute, Namseoul University)
  • 권혁우 (극동대학교 임상병리학과) ;
  • 신정해 (극동대학교 임상병리학과) ;
  • 박창은 (남서울대학교 임상병리학과.분자진단연구소) ;
  • 이동하 (남서울대학교 임상병리학과.분자진단연구소)
  • Received : 2019.01.17
  • Accepted : 2019.02.07
  • Published : 2019.03.31

Abstract

Platelet aggregation is essential for the formation of a hemostatic plug in the case of blood vessel damage. On the other hand, excessive platelet aggregation may cause cardiovascular disorders, such as thrombosis, atherosclerosis, and myocardial infarction. Scopoletin, which found in the root of plants in the genus Scopolia or Artemisia, has anti-coagulation and anti-malaria effects. This study examined the effects of scopoletin on human platelet aggregation induced by collagen. Scopoletin had anti-platelet effects via the down-regulation of thromboxane $A_2$ ($TXA_2$) production and intracellular $Ca^{2+}$ mobilization ($[Ca^{2+}]_i$), which are aggregation-inducing molecules produced in activated platelets. On the other hand, scopoletin increased both the cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) levels, which are known as intracellular $Ca^{2+}$-antagonists and aggregation-inhibiting molecules. In particular, scopoletin increased the potently cAMP level more than cGMP, which led to suppressed fibrinogen binding to ${\alpha}IIb/{\beta}_3$ in collagen-induced human platelet aggregation. In addition, scopoletin inhibited collagen-elevated adenosine triphosphate (ATP) release in a dose-dependent manner. The results suggest that aggregation amplification through granule secretion is inhibited by scopoletin. Therefore, scopoletin has potent anti-platelet effects and may have potential for the prevention of platelet-derived vascular diseases.

혈소판 응집은 혈관 손상의 경우 지혈 플러그 형성에 필수적이다. 그러나, 과도한 혈소판 응집은 혈전증, 죽상 동맥 경화증 및 심근 경색과 같은 순환기 장애를 일으킬 수도 있다. Scopoletin은 Scopolia 또는 Artemisia 속 식물의 뿌리에서 발견되는 성분으로, 항응고 및 항말라리아 작용을 가지는 것으로 알려져 있다. 본 연구는 collagen에 의해 유발된 혈소판 응집에 scopoletin이 미치는 영향을 조사하였다. Scopoletin은 활성화된 혈소판에서 생성되는 응집 유도 분자인 thromboxane $A_2$ ($TXA_2$) 및 세포 내 $Ca^{2+}$ 동원 ($[Ca^{2+}]_i$)의 하향 조절을 통해 항 혈소판 효과를 나타내었다. 한편, scopoletin은 세포 내 $Ca^{2+}$-길항제인 것으로 알려져 있는 cyclic adenosine monophosphate(cAMP)와 cyclic guanosine monophosphate (cGMP) 수치를 증가시켰다. 특히, scopoletin은 cGMP보다 cAMP 수준을 강력하게 증가함으로써 콜라겐에 의해 유발된 사람 혈소판 응집에서의 ${\alpha}IIb/{\beta}_3$에 대한 피브리노겐 결합을 억제하였다. 또한, scopoletin은 용량 의존적으로 collagen에 의해 증가된 adenosine trisphosphate (ATP)의 방출을 억제하였다. 이 결과는 혈소판 내 과립 분비를 통한 응집 증폭작용이 scopoletin에 의해 억제되었음을 의미한다. 따라서, 본 연구는 scopoletin이 강력한 항혈소판 효과를 가지며 혈소판-유래의 혈관 질환을 예방할 가능성이 크다는 것을 입증하였다.

Keywords

References

  1. Schwartz SM, Heinmark RL, Majesky MW. Developmental mechanisms underlying pathology of arteries. Physiol Rev. 1990;70:1177-1209. https://doi.org/10.1152/physrev.1990.70.4.1177.
  2. Cattaneo M, Tenconi PM, Lecchi A, Mannucci PM. In vitro effects of picotamide on human platelet aggregation, the release reaction and thromboxane B2 production. Thromb Res. 1991;62:717-724. https://doi.org/10.1016/0049-3848(91)90375-7
  3. Nishikawa M, Tanaka T, Hidaka H. Ca2+-calmodulin-dependent phosphorylation and platelet secretion. Nature. 1980;287:863-865. https://doi.org/10.1038/287863a0
  4. Kaibuchi K, Sano K, Hoshijima M, Takai Y, Nishizuka Y. Phosphatidylinositol turnover in platelet activation; calcium mobilization and protein phosphorylation. Cell Calcium. 1982;3:323-335. https://doi.org/10.1016/0143-4160(82)90020-3
  5. Menshikov MYu, Ivanova K, Schaefer M, Drummer C, Gerzer R. Influence of the cGMP analog 8-PCPT-cGMP on agonist-induced increases in cytosolic ionized Ca2+ and on aggregation of human platelets. Eur J Pharmacol. 1993;245:281-284. https://doi.org/10.1016/0922-4106(93)90108-L
  6. Atkinson BT, Stafford MJ, Pears CJ, Watson SP. Signalling events underlying platelet aggregation induced by the glycoprotein VI agonist convulxin. Eur J Biochem. 2001;268:5242-5248. https://doi.org/10.1046/j.0014-2956.2001.02448.x
  7. Kawada T, Toyosato A, Islam MO, Yoshida Y, Imai S. cGMPkinase mediates cGMP- and cAMP-induced $Ca^{2+}$ desensitization of skinned rat artery. Eur J Pharmacol. 1997;323:75-82. https://doi.org/10.1016/S0014-2999(97)00028-9
  8. Calderwood DA, Shattil SJ, Ginsberg MH. Integrins and actin filaments: reciprocal regulation of cell adhesion and signaling. J Biol Chem. 2000;275:22607-22610. https://doi.org/10.1074/jbc.R900037199.
  9. Smolenski A, Burkhardt AM, Eigenthaler M, Butt E, Gambaryan S, Lohmann SM, et al. Functional analysis of cGMP-dependent protein kinases I and II as mediators of NO/cGMP effects. Naunyn Schmiedebergs Arch Pharmacol. 1998;358:134-139. https://doi.org/10.1007/PL00005234
  10. Towler MJ, Weathers PJ. Variations in key artemisinic and other metabolites throughout plant development in Artemisia annua L. for potential therapeutic use. Ind Crops Prod. 2015;67:185-191. https://doi.org/10.1016/j.indcrop.2015.01.007.
  11. Obasi SC, Njoku OU, Obidoa O. Effects of single oral doses of scopoletin and aflatoxin B1 on the clotting time, serum cholesterol and phospholipid levels of chicks. Indian J Physiol Pharmacol. 1994;38:89-94.
  12. Kwon HW, Lee DH. The inhibitory effects of cordycepin on phosphoproteins including PI3K, Akt, and p38. Korean J Clin Lab Sci. 2017;49:99-107. https://doi.org/10.15324/kjcls.2017.49.2.99.
  13. Schaeffer J, Blaustein MP. Platelet free calcium concentrations measured with fura-2 are influenced by the transmembrane sodium gradient. Cell Calcium. 1989;10:101-113. https://doi.org/10.1016/0143-4160(89)90050-X
  14. Kawada N, Uoya M, Seki S, Kuroki T, Kobayashi K. Regulation by cAMP of STAT1 activation in hepatic stellate cells. Biochem Biophys Res Commun. 1997;233:464-469. https://doi.org/10.1006/bbrc.1997.6481.
  15. Horstrup K, Jablonka B, Honig-Liedl P, Just M, Kochsiek K, Walter U. Phosphorylation of focal adhesion vasodilatorstimulated phosphoprotein at Ser157 in intact human platelets correlates with fibrinogen receptor inhibition. Eur J Biochem. 1994;225:21-27. https://doi.org/10.1111/j.1432-1033.1994.00021.x
  16. Barragan P, Bouvier JL, Roquebert PO, Macaluso G, Commeau P, Comet B, et al. Resistance to thienopyridines: clinical detection of coronary stent thrombosis by monitoring of vasodilator-stimulated phosphoprotein phosphorylation. Catheter Cardiovasc Interv. 2003;59:295-302. https://doi.org/10.1002/ccd.10497.
  17. Berridge MJ, Irvine RF. Inositol phosphates and cell signalling. Nature. 1989;341:197-205. https://doi.org/10.1038/341197a0.
  18. Okwu AK, Ullian ME, Halushka PV. Homologous desensitization of human platelet thromboxane A2/prostaglandin H2 receptors. J Pharmacol Exp Ther. 1992;262:238-245.
  19. Kuo JF, Andersson RG, Wise BC, Mackerlova L, Salomonsson I, Brackett NL, et al. Calcium-dependent protein kinase: widespread occurrence in various tissues and phyla of the animal kingdom and comparison of effects of phospholipid, calmodulin, and trifluoperazine. Proc Natl Acad Sci USA. 1980;77:7039-7043. https://doi.org/10.1073/pnas.77.12.7039
  20. Gao J, Tao J, Liang W, Zhao M, Du X, Cui S, et al. Identification and characterization of phosphodiesterases that specifically degrade 3'3'-cyclic GMP-AMP. Cell Res. 2015;25:539-550. https://doi.org/10.1038/cr.2015.40.
  21. Haslam RJ, Dickinson NT, Jang EK. Cyclic nucleotides and phosphodiesterases in platelets. Thromb Haemost. 1999;82:412-423. https://doi.org/10.1055/s-0037-1615861
  22. Napenas J, Oost FC, DeGroot A, Loven B, Hong CH, Brennan MT, et al. Review of postoperative bleeding risk in dental patients on antiplatelet therapy. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;115:491-499. https://doi.org/10.1016/j.oooo.2012.11.001.
  23. Wangorsch G, Butt E, Mark R, Hubertus K, Geiger J, Dandekar T, et al. Time-resolved in silico modeling of finetuned cAMP signaling in platelets: feedback loops, titrated phosphorylations and pharmacological modulation, BMC Syst Biol. 2011;5:178. https://doi.org/10.1186/1752-0509-5-178.
  24. Coles B, Bloodsworth A, Eiserich JP, Coffey MJ, McLoughlin RM, Giddings JC, et al. Nitrolinoleate inhibits platelet activation by attenuating calcium mobilization and inducing phosphorylation of vasodilator-stimulated phosphoprotein through elevation of cAMP. J Biol Chem. 2002;277:5832-5840. https://doi.org/10.1074/jbc.M105209200.
  25. Wentworth JK, Pula G, Poole AW. Vasodilator-stimulated phosphoprotein (VASP) is phosphorylated on Ser157 by protein kinase C-dependent and -independent mechanisms in thrombin-stimulated human platelets. Biochemical J. 2006;393:555-564. https://doi.org/10.1042/BJ20050796.
  26. Holmsen H, Day HJ. The selectivity of the thrombininduced platelet release reaction: subcellular localization of released and retained constituents. J Lab Clin Med. 1970;75:840-855.
  27. Mustard JF, Packham MA. Factors influencing platelet function: adhesion, release, and aggregation. Pharmacol Rev. 1970;22:97-187.