• Title/Summary/Keyword: Intracellular

Search Result 3,557, Processing Time 0.035 seconds

Intracellular CD154 Expression Reflects Antigen-specific $CD8^+\;T$ Cells but Shows Less Sensitivity than Intracellular Cytokine and MHC Tetramer Staining

  • Han, Young-Woo;Aleyas, Abi G.;George, Junu A.;Yoon, Hyun-A;Lee, John-Hwa;Kim, Byung-Sam;Eo, Seong-Kug
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.12
    • /
    • pp.1955-1964
    • /
    • 2007
  • A recent report showed that analysis of CD154 expression in the presence of the secretion inhibitor Brefeldin A (Bref A) could be used to assess the entire repertoire of antigen-specific $CD4^+\;T$ helper cells. However, the capacity of intracellular CD154 expression to identify antigen-specific $CD8^+\;T$ cells has yet to be investigated. In this study, we compared the ability of intracellular CD154 expression to assess antigen-specific $CD8^+\;T$ cells with that of accepted standard assays, namely intracellular cytokine IFN-${\gamma}$ staining (ICS) and MHC class I tetramer staining. The detection of intracellular CD154 molecules in the presence of Bref A reflected the kinetic trend of antigen-specific $CD8^+\;T$ cell number, but unfortunately showed less sensitivity than ICS and tetramer staining. However, ICS levels peaked and saturated 8 h after antigenic stimulation in the presence of Bref A and then declined, whereas intracellular CD154 expression peaked by 8 h and maintained the saturated level up to 24 h post-stimulation. Moreover, intracellular CD154 expression in antigen-specific $CD8^+\;T$ cells developed in the absence of $CD4^+\;T$ cells changed little, whereas the number of IFN-${\gamma}$-producing $CD8^+\;T$ cells decreased abruptly. These results suggest that intracellular CD154 could aid the assessment of antigen-specific $CD8^+\;T$ cells, but does not have as much ability to identify heterogeneous $CD4^+\;T$ helper cells. Therefore, the combined analytical techniques of ICS and tetramer staining together with intracellular CD154 assays may be able to provide useful information on the accurate phenotype and functionality of antigen-specific $CD8^+\;T$ cells.

Effects of ${\alpha}_1-Adrenergic$ Stimulation on Contractility and Intracellular $Na^+$ Activity of Guinea Pig Ventricular Muscles (기니픽 심근의 수축력과 세포내 $Na^+$ 활성도에 미치는 ${\alpha}_1-Adrenergic$ 수용체 자극효과)

  • Kim, Jin-Sang;Kang, Hyung-Sub;Chae, Soo-Wan;Lee, Chin-Ok
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.2
    • /
    • pp.189-199
    • /
    • 1996
  • Myocardial ${\alpha}_1-adrenoceptors$ have been shown to mediate a biphaslc inotropic response that was characterized by a transient decline followed by a sustained increasing phase in guinea pig ventricular muscle. Recently one group reported that an ${\alpha}_1-adrenoceptors-induced$ intracellular $Na^+$ decrease is linked to fast $Na^+$ channel inhibition and another group reported that it is linked to $Na^+$-$K^+$ pump activation by ${\alpha}_{1b}-adrenoceptors$. But until now, its mechanism is not clear. Therefore, to see whether the $Na^+$channel or $Na^+-K^+$ pump is related to a decrease in intracellular $Na^+$ activity and/or the negative inotropic response, and which ${\alpha}_1-adrenoceptor$ subtype was involved in the decrease in intracellular $Na^+$activity by phenylephrine, we used conventional and sodium selective microelectrodes, and tension transducer to determine the effects of ${\alpha}_1-adrenergic$ stimulation on membrane potential, intracellular $Na^+$ activity, and twitch force in guinea pig ventricular muscles. $10^{-5}$ M Phenylephrine produced a slight hyperpolarization of the diastolic membrane potential, a decrease or increase in $a_N^i_a$, and a biphasic inotropic response. The negative inotropic response accompanied by a decrease in intracellular $Na^+$activity, whereas in muscles showing a remarkable positive inotropic response without initial negative inotropic effect was accompanied by an increase in intracellular $Na^+$ activity. The decrease in intracellular $Na^+$ activity was apparently inhibited by WB4101, an antagonist of the ${\alpha}_{1a}-adrenoceptors$. The decrease in intracellular $Na^+$ activity caused by phenylephrine was not abolished or reduced by a block of the fast $Na^+$ channels. $V_{max}$ also was not affected by phenylephrine. Phenylephrine produced an increase in intracellular $Na^+$ activity in the presence of a high concentration of extracellular $Ca^{2+}$ (in quiescent muscle) or phorbol dibutyrate, a protein kinase C activator(in beating muscle). These suggest that the ${\alpha}_{1a}-adrenoceptors-mediated$ decrease in intracellular $Na^+$ activity may be related to the protein kinase C.

  • PDF

Alterations in the Activities of Antioxidant Enzymes of Human Dermal Microvascular Endothelial Cells Infected with Orientia tsutsugamushi

  • Koh, Young-Sang
    • Journal of Microbiology
    • /
    • v.39 no.2
    • /
    • pp.142-145
    • /
    • 2001
  • Changes in the Activities of several antioxidant enzymes in transformed human dermal microvascular endothelial Cells (HMEC-1) by infection with the obligate intracellular bacterium Orientia tsutsugamushi, the causative agent of scrub typhus, were investigated. The activities of glucose-6-phosphate dehydrogenase, catalase, and glutathione peroxidase were significantly decreased in HMEC-1 cells infected with Ο. tsutsugamushi. However, the level of superoxide dismutase increased slightly. Furthermore, Increased levels of intracellular peroxide was observed in HMEC-1 during infection. These results support the hypothesis that cells infected by this intracellular bacterium experience oxidant-mediated injury that may eventually contribute to cell death.

  • PDF

Regulation of Intracellular pH by SHC1 in Saccharomyces cerevisiae (효모에서 SHC1 유전자의 이온 농도 조절에 의한 세포내 pH 항상성 유지)

  • 하승길;전준철;최의열
    • Korean Journal of Microbiology
    • /
    • v.38 no.3
    • /
    • pp.168-172
    • /
    • 2002
  • Budding yeasts maintain an effective system to regulate intracellular pH in response to environmental pH fluctuation. In a previous study we reported that SHC1 plays a role in cell growth at alkaline condition, not at acid pH. We constructed a null mutant deleted an entire open reading frame for SHC1. To test whether the retardation in cell growth was caused by the absence of intracellular pH buffering capacity, we measured intracellular pH with a pH-sensitive fluorescent dye, C.SNARE. The intracellular pH of the mutant cell was much higher than that of wild-type cells, indicating that the mutant cells lack some types of buffering capacity. We also investigated the level of $Na^+ and K^+$ content with atomic mass spectroscopy after alkali shock. Wild-type cell showed a higher level of intracellular K^+$ content, whereas there was no difference in $Na^+$ level. The result suggested that K^+$ is more important in the regulation of intracellular pH in yeasts.

[Ca2+]-dependent Generation of Intracellular Reactive Oxygen Species Mediates Maitotoxin-induced Cellular Responses in Human Umbilical Vein Endothelial Cells

  • Yi, Sun-Ju;Kim, Kyung Hwan;Choi, Hyun Jung;Yoo, Je Ok;Jung, Hyo-Il;Han, Jeong-A;Kim, Young-Myeong;Suh, In Bum;Ha, Kwon-Soo
    • Molecules and Cells
    • /
    • v.21 no.1
    • /
    • pp.121-128
    • /
    • 2006
  • Maitotoxin (MTX) is known as one of the most potent marine toxins involved in Ciguatera poisoning, but intracellular signaling pathways caused by MTX was not fully understood. Thus, we have investigated whether intracellular reactive oxygen species (ROS) are involved in MTX-induced cellular responses in human umbilical vein endothelial cells. MTX induced a dose-dependent increase of intracellular [$Ca^{2+}$]. MTX stimulated the production of intracellular ROS in a dose- and time-dependent manner, which was suppressed by BAPTA-AM, an intracellular $Ca^{2+}$ chelator. Ionomycin also elevated the ROS production in a dose-dependent manner. MTX elevated transamidation activity in a time-dependent manner and the activation was largely inhibited by transfection of tissue transglutaminase siRNA. The activation of tissue transglutaminase and ERK1/2 by MTX was suppressed by BAPTA-AM or ROS scavengers. In addition, MTX-induced cell death was significantly delayed by BAPTA-AM or a ROS scavenger. These results suggest that [$Ca^{2+}$]-dependent generation of intracellular ROS, at least in part, play an important role in MTX-stimulated cellular responses, such as activation of tTGase, ERK phosphorylation, and induction of cell death, in human umbilical vein endothelial cells.

Unveiling the impact of lysosomal ion channels: balancing ion signaling and disease pathogenesis

  • Yoona Jung;Wonjoon Kim;Na Kyoung Shin;Young Min Bae;Jinhong Wie
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.4
    • /
    • pp.311-323
    • /
    • 2023
  • Ion homeostasis, which is regulated by ion channels, is crucial for intracellular signaling. These channels are involved in diverse signaling pathways, including cell proliferation, migration, and intracellular calcium dynamics. Consequently, ion channel dysfunction can lead to various diseases. In addition, these channels are present in the plasma membrane and intracellular organelles. However, our understanding of the function of intracellular organellar ion channels is limited. Recent advancements in electrophysiological techniques have enabled us to record ion channels within intracellular organelles and thus learn more about their functions. Autophagy is a vital process of intracellular protein degradation that facilitates the breakdown of aged, unnecessary, and harmful proteins into their amino acid residues. Lysosomes, which were previously considered protein-degrading garbage boxes, are now recognized as crucial intracellular sensors that play significant roles in normal signaling and disease pathogenesis. Lysosomes participate in various processes, including digestion, recycling, exocytosis, calcium signaling, nutrient sensing, and wound repair, highlighting the importance of ion channels in these signaling pathways. This review focuses on different lysosomal ion channels, including those associated with diseases, and provides insights into their cellular functions. By summarizing the existing knowledge and literature, this review emphasizes the need for further research in this field. Ultimately, this study aims to provide novel perspectives on the regulation of lysosomal ion channels and the significance of ion-associated signaling in intracellular functions to develop innovative therapeutic targets for rare and lysosomal storage diseases.

Effect of Intracellular Calcium Level on the Hybridoma Cell Growth and Monoclonal Antibody Production (세포내 calcuim 농도가 하이브리도마 세포 성장 및 단일클론항체 생산에 미치는 영향)

  • 박재성;남민희;박선호
    • KSBB Journal
    • /
    • v.13 no.5
    • /
    • pp.585-592
    • /
    • 1998
  • The effect of intracellular Ca2+ level on the hybridoma cell growth and monoclonal antibody(MAb) production was examined. For the manipulation of intracellular Ca2+ concentration, the cells were treated with A23187, ryanodine, and thapsigargin at about 1x106 cells/mL. The treated cells were recultivated by using the Iscove's Modified Dulbecco's Medium(MDM) containing 1.49mM CaCl2. The ryanodine-treated cells showed better cell growth, MAb concentration, and specific MAb productivity than others. In comparison with control, the maximum cell concentration, MAb concentration, and specific MAb productivity were increased by 40.6%, 48.1% and 83.3%, respectively. Confocal microscopic images of Fura-2/AM loaded cells indicate that the increase in intracellular Ca2+ level can enhance the MAb productivity by allowing the calcium influx into the endoplasmic reticulumn.

  • PDF

First Record of Mycoplasma-like Organism in Pacific Oyster (Crassostrea gigas) in Korea

  • Choi Dong Lim;Choi Hee Jung;Lee Nam-Sil;Park Mi Seon
    • Fisheries and Aquatic Sciences
    • /
    • v.6 no.3
    • /
    • pp.135-139
    • /
    • 2003
  • During routine survey of Pacific oyster (Crassostrea gigas) collected from Tongyoung area in southern coast of Korea, histological examination revealed that a intracellular microorganisms infected the digestive gland of the oyster. They infected hepatopancreatic cells extensively. The size of intracellular microorganism was of 45 to 86nm in diameter and 200nm to more thar 500nm in length. They were pleomorphic. The morphological characteristic of intracellular microorganisms lacked cell wall and was bounded by the plasma membrane. They contained typical prokaryotic ribosomes and fibrillar DNA-like strands. No additional internal structure has been observed. Based on the lack of cell wall and the cellular localization, the intracellular microorganism is considered as a Mycoplasma-like organism.

Effects of NaOCl on the Intracellular Calcium Concentration in Rat Dorsal Root Ganglion Neurons

  • Lee, Hae-In;Chun, Sang-Woo
    • International Journal of Oral Biology
    • /
    • v.35 no.3
    • /
    • pp.129-135
    • /
    • 2010
  • Recent studies have implicated reactive oxygen species (ROS) as determinants of the pathological pain caused by the activation of peripheral neurons. It has not been elucidated, however, how ROS activate the primary sensory neurons in the pain pathway. In this study, calcium imaging was performed to investigate the effects of NaOCl, a ROS donor, on the intracellular calcium concentration ($[Ca^{2+}]i$) in acutely dissociated dorsal root ganglion (DRG) neurons. DRG was sequentially treated with 0.2 mg/ml of both protease and thermolysin, and single neurons were then obtained by mechanical dissociation. The administration of NaOCl then caused a reversible increase in the $[Ca^{2+}]i$, which was inhibited by pretreatment with phenyl-N-tertbuthylnitrone (PBN) and isoascorbate, both ROS scavengers. The NaOCl-induced $[Ca^{2+}]i$ increase was suppressed both in a calcium free solution and after depletion of the intracellular $Ca^{2+}$ pool by thapsigargin. Additionally, this increase was predominantly blocked by pretreatment with the transient receptor potential (TRP) antagonists, ruthenium red ($50\;{\mu}M$) and capsazepine ($10\;{\mu}M$). Collectively, these results suggest that an increase in the intracellular calcium concentration is produced from both extracellular fluid and the intracellular calcium store, and that TRP might be involved in the sensation of pain induced by ROS.

Purification and Characterization of the Intracellular Alginase from Vibrio sp. AL-145 (알긴산 분해균 Vibrio sp. AL-145가 생산하는 균체내 효소의 정제 및 특성)

  • Joo, Dong-Sik;Lee, Jung-Suk;Park, Jung-Je;Cho, Soon-Yeong;Ahn, Chang-Bum;Lee, Eung-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.4
    • /
    • pp.432-438
    • /
    • 1995
  • The intracellular alginase from Vibrio sp. AL-145 was purified by ion chromatography on DEAE-Cellulose column, Q-Sepharose column, and gel filtration on Sephadex G-100 column. The optimum pH and temperature for the activity of the purified intracellular enzyme were 8.0 and 37$\circ$C, respectively. The enzyme was stable at the pH range of 7.5-8.5, and at 30$\circ$C for 30 min. The molecular weight of the intracellular enzyme was estimated to be about 23, 000 daltons by SDS-polyacrylamide gel electrophoresis. NaCl was required for enzyme activity and the optimum concentration was 0.5 M. The activity of intracellular enzyme was inhibited by Co$^{2+}$, Hg$^{2+}$, Zn$^{2+}$, 0-phenanthroline, $\rho$-CMB, EDTA and iodoacetate, and stimulated by Ca$^{2+}$, L-cysteine and 2-mercaptoethanol. This enzyme was an alginase specifically degrading alginic acid.

  • PDF