Browse > Article

Intracellular CD154 Expression Reflects Antigen-specific $CD8^+\;T$ Cells but Shows Less Sensitivity than Intracellular Cytokine and MHC Tetramer Staining  

Han, Young-Woo (Department of Microbiology, College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University)
Aleyas, Abi G. (Department of Microbiology, College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University)
George, Junu A. (Department of Microbiology, College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University)
Yoon, Hyun-A (Department of Microbiology, College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University)
Lee, John-Hwa (Department of Microbiology, College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University)
Kim, Byung-Sam (Immunomodulation Research Center, University of Ulsan)
Eo, Seong-Kug (Department of Microbiology, College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.12, 2007 , pp. 1955-1964 More about this Journal
Abstract
A recent report showed that analysis of CD154 expression in the presence of the secretion inhibitor Brefeldin A (Bref A) could be used to assess the entire repertoire of antigen-specific $CD4^+\;T$ helper cells. However, the capacity of intracellular CD154 expression to identify antigen-specific $CD8^+\;T$ cells has yet to be investigated. In this study, we compared the ability of intracellular CD154 expression to assess antigen-specific $CD8^+\;T$ cells with that of accepted standard assays, namely intracellular cytokine IFN-${\gamma}$ staining (ICS) and MHC class I tetramer staining. The detection of intracellular CD154 molecules in the presence of Bref A reflected the kinetic trend of antigen-specific $CD8^+\;T$ cell number, but unfortunately showed less sensitivity than ICS and tetramer staining. However, ICS levels peaked and saturated 8 h after antigenic stimulation in the presence of Bref A and then declined, whereas intracellular CD154 expression peaked by 8 h and maintained the saturated level up to 24 h post-stimulation. Moreover, intracellular CD154 expression in antigen-specific $CD8^+\;T$ cells developed in the absence of $CD4^+\;T$ cells changed little, whereas the number of IFN-${\gamma}$-producing $CD8^+\;T$ cells decreased abruptly. These results suggest that intracellular CD154 could aid the assessment of antigen-specific $CD8^+\;T$ cells, but does not have as much ability to identify heterogeneous $CD4^+\;T$ helper cells. Therefore, the combined analytical techniques of ICS and tetramer staining together with intracellular CD154 assays may be able to provide useful information on the accurate phenotype and functionality of antigen-specific $CD8^+\;T$ cells.
Keywords
Intracellular CD154; intracellular cytokine staining; MHC class I tetramer; antigen-specific $CD8^+\; T$ cells;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Beadling, C. and M. K. Slifka. 2006. Quantifying viable virus-specific T cells without a priori knowledge of fine epitope specificity. Nat. Med. 12: 1208-1212   DOI   ScienceOn
2 Behrens, G., M. Li, C. M. Smith, G. T. Belz, J. Mintern, F. R. Carbone, and W. R. Heath. 2004. Helper T cells, dendritic cells and CTL immunity. Immunol. Cell Biol. 82: 84-90   DOI   ScienceOn
3 Betts, M. R., J. P. Casazza, B. A. Patterson, S. Waldrop, W. Trigona, T. M. Fu, F. Kern, L. J. Picker, and R. A. Koup. 2000. Putative immunodominant human immunodeficiency virus-specific CD8(+) T-cell responses cannot be predicted by major histocompatibility complex class I haplotype. J. Virol. 74: 9144-9151   DOI   ScienceOn
4 Fadel, S. A., L. G. Cowell, S. Cao, D. A. Ozaki, T. B. Kepler, D. A. Steeber, and M. Sarzotti. 2006. Neonate-primed CD8+ memory cells rival adult-primed memory cells in antigen-driven expansion and anti-viral protection. Int. Immunol. 18: 249-257   DOI   ScienceOn
5 Falco, D. A., R. R. Nepomuceno, S. M. Krams, P. P. Lee, M. M. Davis, O. Salvatierra, S. R. Alexander, C. O. Esquivel, K. L. Cox, L. R. Frankel, and O. M. Martinez. 2002. Identification of Epstein-Barr virus-specific CD8+ T lymphocytes in the circulation of pediatric transplant recipients. Transplantation 74: 501-510   DOI   ScienceOn
6 Murali-Krishna, K., J. D. Altman, M. Suresh, D. J. Sourdive, A. J. Zajac, J. D. Miller, J. Slansky, and R. Ahmed. 1998. Counting antigen-specific CD8 T cells: A reevaluation of bystander activation during viral infection. Immunity 8: 177-187   DOI   ScienceOn
7 Roy, M., T. Waldschmidt, A. Aruffo, J. A. Ledbetter, and R. J. Noelle. 1993. The regulation of the expression of gp39, the CD40 ligand, on normal and cloned CD4+ T cells. J. Immunol. 151: 2497-2510
8 Salem, M. L., A. N. Kadima, D. J. Cole, and W. E. Gillanders. 2005. Defining the antigen-specific T-cell response to vaccination and poly(I:C)/TLR3 signaling: Evidence of enhanced primary and memory CD8 T-cell responses and antitumor immunity. J. Immunother. 28: 220-228   DOI   ScienceOn
9 Trapani, J. A. and M. J. Smyth. 2002. Functional significance of the perforin/granzyme cell death pathway. Nat. Rev. Immunol. 2: 735-747   DOI   ScienceOn
10 Huang, X. L., Z. Fan, C. Kalinyak, J. W. Mellors, and C. R. Rinaldo Jr. 2000. CD8(+) T-cell gamma interferon production specific for human immunodeficiency virus type 1 (HIV-1) in HIV-1-infected subjects. Clin. Diagn. Lab. Immunol. 7: 279-287
11 Sun, J. C. and M. J. Bevan. 2003. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science 300: 339-342   DOI   ScienceOn
12 Koo, J. H., W. J. Chae, J. M. Choi, H. W. Nam, T. Morio, Y. S. Kim, Y. S. Jang, K. Y. Choi, J. J. Yang, and S. K. Lee. 2006. Proteomic analysis of resting and activated human CD8+ T cells. J. Microbiol. Biotechnol. 16: 911-920   과학기술학회마을
13 Betts, M. R., J. M. Brenchley, D. A. Price, S. C. De Rosa, D. C. Douek, M. Roederer, and R. A. Koup. 2003. Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J. Immunol. Methods 281: 65-78   DOI
14 Kim, H. P., M. R. Jin, I. Y. Kim, B. Y. Ahn, and S. M. Kang. 1999. Analysis of the major histocompatibility complex class I antigen presentation machinery in human lung cancer. J. Microbiol. Biotechnol. 9: 346-351
15 Trautmann, L., L. Janbazian, N. Chomont, E. A. Said, S. Gimmig, B. Bessette, M. R. Boulassel, E. Delwart, H. Sepulveda, R. S. Balderas, J. P. Routy, E. K. Haddad, and R. P. Sekaly. 2006. Upregulation of PD-1 expression on HIV-specific CD8+ T cells leads to reversible immune dysfunction. Nat. Med. 12: 1198-1202   DOI   ScienceOn
16 Douek, D. C., M. R. Betts, J. M. Brenchley, B. J. Hill, D. R. Ambrozak, K. L. Ngai, N. J. Karandikar, J. P. Casazza, and R. A. Koup. 2002. A novel approach to the analysis of specificity, clonality, and frequency of HIV-specific T cell responses reveals a potential mechanism for control of viral escape. J. Immunol. 168: 3099-3104   DOI
17 Sonn, C. H., H. R. Yoon, I. O. Seong, M. R. Chang, Y. C. Kim, H. C. Kang, S. C. Suh, and Y. S. Kim. 2006. MethA fibrosarcoma cells expressing membrane-bound forms of IL- 2 enhance antitumor immunity. J. Microbiol. Biotechnol. 16: 1919-1927   과학기술학회마을
18 van Kooten, C. and J. Banchereau. 2000. CD40-CD40 ligand. J. Leukoc. Biol. 67: 2-17   DOI
19 Chattopadhyay, P. K., J. Yu, and M. Roederer. 2005. Alivecell assay to detect antigen-specific CD4+ T cells with diverse cytokine profiles. Nat. Med. 11: 1113-1137   DOI   ScienceOn
20 Misumi, Y., Y. Misumi, K. Miki, A. Takatsuki, G. Tamura, and Y. Ikehara. 1986. Novel blockade by Brefeldin A of intracellular transport of secretory proteins in cultured rat hepatocytes. J. Biol. Chem. 261: 11398-11403
21 Kang, K. Y., C. H. Choi, J. Y. Oh, H. Kim, G. R. Kweon, and J. C. Lee. 2005. Chloramphenicol arrests transition of cell cycle and induces apoptotic cell death in myelogenous leukemia cells. J. Microbiol. Biotechnol. 15: 913-918
22 Yellin, M. J., K. Sippel, G. Inghirami, L. R. Covey, J. J. Lee, J. Sinning, E. A. Clark, L. Chess, and S. Lederman. 1994. CD40 molecules induce down-modulation and endocytosis of T cell surface T cell-B cell activating molecule/CD40-L. Potential role in regulating helper effector function. J. Immunol. 152: 598-608
23 Kern, F., I. P. Surel, C. Brock, B. Freistedt, H. Radtke, A. Scheffold, R. Blasczyk, P. Reinke, J. Schneider-Mergener, A. Radbruch, P. Walden, and H. D. Volk. 1998. T-cell epitope mapping by flow cytometry. Nat. Med. 4: 975-978   DOI   ScienceOn
24 Sad, S., L. Krishnan, R. C. Bleackley, D. Kagi, H. Hengartner, and T. R. Mosmann. 1997. Cytotoxicity and weak CD40 ligand expression of CD8+ type 2 cytotoxic T cells restricts their potential B cell helper activity. Eur. J. Immunol. 27: 914-922   DOI   ScienceOn
25 Graf, D., U. Korthauer, H. W. Mages, G. Senger, and R. A. Kroczek. 1992. Cloning of TRAP, a ligand for CD40 on human T cells. Eur. J. Immunol. 22: 3191-3194   DOI   ScienceOn
26 Altman, J. D., P. A. Moss, P. J. Goulder, D. H. Barouch, M. G. McHeyzer-Williams, J. I. Bell, A. J. McMichael, and M. M. Davis. 1996. Phenotypic analysis of antigen-specific T lymphocytes. Science 274: 94-96   DOI   ScienceOn
27 Walker, E. B. and M. L. Disis. 2003. Monitoring immune responses in cancer patients receiving tumor vaccines. Int. Rev. Immunol. 22: 283-319   DOI   ScienceOn
28 Frentsch, M., O. Arbach, D. Kirchhoff, B. Moewes, M. Worm, M. Rothe, A. Scheffold, and A. Thiel. 2005. Direct access to CD4+ T cells specific for defined antigens according to CD154 expression. Nat. Med. 11: 1118-1124   DOI   ScienceOn
29 Bartholomae, W. C., F. H. Rininsland, J. C. Eisenberg, B. O. Boehm, P. V. Lehmann, and M. Tary-Lehmann. 2004. T cell immunity induced by live, necrotic, and apoptotic tumor cells. J. Immunol. 173: 1012-1022   DOI
30 Clay, T. M., A. C. Hobeika, P. J. Mosca, H. K. Lyerly, and M. A. Morse. 2001. Assays for monitoring cellular immune responses to active immunotherapy of cancer. Clin. Cancer Res. 7: 1127-1135
31 Yim, S. B. and Y. H. Chung. 2004. Construction and production of concatameric human TNF receptor-immunoglobulin fusion proteins. J. Microbiol. Biotechnol. 14: 81-89
32 Chang, J., J. H. Cho, S. W. Lee, S. Y. Choi, S. J. Ha, and Y. C. Sung. 2004. IL-12 priming during in vitro antigenic stimulation changes properties of CD8 T cells and increases generation of effector and memory cells. J. Immunol. 172: 2818-2826   DOI
33 Barber, D. L., E. J. Wherry, D. Masopust, B. Zhu, J. P. Allison, A. H. Sharpe, G. J. Freeman, and R. Ahmed. 2006. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439: 682-687   DOI   ScienceOn
34 Scott-Algara, D., F. Buseyne, F. Porrot, B. Corre, N. Bellal, C. Rouzioux, S. Blanche, and Y. Riviere. 2005. Not all tetramer binding CD8+ T cells can produce cytokines and chemokines involved in the effector functions of virusspecific CD8+ T lymphocytes in HIV-1 infected children. J. Clin. Immunol. 25: 57-67   DOI   ScienceOn
35 Whiteside, T. L. and J. A. Hank. 2002. Monitoring of immunologic therapies, pp. 1108-1117. In R. G. H. R. N. Rose, and B. Detrick (eds.), Manual of Clinical Laboratory Immunology, 6th Ed. ASM, Washington, DC
36 Appay, V., D. F. Nixon, S. M. Donahoe, G. M. Gillespie, T. Dong, A. King, G. S. Ogg, H. M. Spiegel, C. Conlon, C. A. Spina, D. V. Havlir, D. D. Richman, A. Waters, P. Easterbrook, A. J. McMichael, and S. L. Rowland-Jones. 2000. HIV-specific CD8(+) T cells produce antiviral cytokines but are impaired in cytolytic function. J. Exp. Med. 192: 63-75   DOI   ScienceOn
37 Armitage, R. J., W. C. Fanslow, L. Strockbine, T. A. Sato, K. N. Clifford, B. M. Macduff, D. M. Anderson, S. D. Gimpel, T. Davis-Smith, C. R. Maliszewski, et al. 1992. Molecular and biological characterization of a murine ligand for CD40. Nature 357: 80-82   DOI   ScienceOn
38 Kuzushima, K., N. Hayashi, A. Kudoh, Y. Akatsuka, K. Tsujimura, Y. Morishima, and T. Tsurumi. 2003. Tetramerassisted identification and characterization of epitopes recognized by HLA A*2402-restricted Epstein-Barr virusspecific CD8+ T cells. Blood 101: 1460-1468   DOI   ScienceOn
39 Hermann, P., C. Van-Kooten, C. Gaillard, J. Banchereau, and D. Blanchard. 1995. CD40 ligand-positive CD8+ T cell clones allow B cell growth and differentiation. Eur. J. Immunol. 25: 2972-2977   DOI   ScienceOn
40 Shedlock, D. J. and H. Shen. 2003. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 300: 337-339   DOI