• Title/Summary/Keyword: Intracellular

Search Result 3,577, Processing Time 0.036 seconds

An Experimental Study of Lactic Acidosis and Potassium Transfer in the Dog (락트산 산증과 칼륨이동에 관한 실험적 연구)

  • Park, Choo-Chul;Lee, Yung-Kyoon
    • Journal of Chest Surgery
    • /
    • v.12 no.4
    • /
    • pp.395-402
    • /
    • 1979
  • Intracellular pH was determined by distribution of 5.5-dimethyl-2,4-oxazolidlnedione [DMO]in the skeletal muscle of dogs before and after lactic acidosis induced by intravenous infusion of lactic acid solution. After infusion of lactic acid solution arterial pH decreased from 7.40 to around 7.12 [P<0.001]and metabolic acidosis was induced. However, dose-pH change response was not proportional as in the case of hydrochloric acid infusion. During lactic acidosis, intracellular pH changed very little except when venous blood $pCO_2$ increased significantly. The decrease of intracellular pH in lactic acidosis might be due primarily to the increase of intracellular $pCO_2$. And during lactic acidosis, change of extracellular pH was larger than that of intracellular pH, and this was also the case of change In hydrogen Ion concentration in extracellular and intracellular fluid. The fact was estimated that exogenous lactic acid transported into the cell does not contribute to pH change by the participation in the metabolism. Change in plasma potassium Ion concentration was not eminent as metabolic acid-base disturbances by other origin, and changing pattern of Hi/He ratio was not same as Ki/Ke ratio. In spite of no changes in extracellular potassium ion concentration after exogenous lactic acidosis total amount of potassium ion in extracellular fluid increased from 12.62mEg to 18.26mEg [P< 0.05].

  • PDF

Intracellular cAMP-modulated Gate in Hyperpolarization Activated Cation Channels

  • Park, Kyung-Joon;Shin, Ki-Soon
    • Animal cells and systems
    • /
    • v.11 no.2
    • /
    • pp.169-173
    • /
    • 2007
  • Hyperpolarization-activated nonselective cation channels (HCNs) play a pivotal role in producing rhythmic electrical activity in the heart and the nerve cells. In our previous experiments, voltage-dependent $Cd^{2+}$ access to one of the substituted cysteines in S6, T464C, supports the existence of an intracellular voltage-dependent activation gate. Direct binding of intracellular cAMP to HCN channels also modulates gating. Here we attempted to locate the cAMP-modulated structure that can modify the gating of HCN channels. SpHCN channels, a sea urchin homologue of the HCN family, became inactivated rapidly and intracellular cAMP removed this inactivation, resulting in about eight-fold increase of steady-state current level. T464C was probed with $Cd^{2+}$ applied to the intracellular side of the channel. We found that access of $Cd^{2+}$ to T464C was strongly gated by cAMP as well as voltage. Release of bound $Cd^{2+}$ by DMPS was also gated in a cAMP-dependent manner. Our results suggest the existence of an intracellular cAMP-modulated gate in the lower S6 region of spHCN channels.

A Phospholipase C-Dependent Intracellular $Ca^{2+}$ Release Pathway Mediates the Capsaicin-Induced Apoptosis in HepG2 Human Hepatoma Cells 73

  • Kim Jung-Ae;Kang Young Shin;Lee Yong Soo
    • Archives of Pharmacal Research
    • /
    • v.28 no.1
    • /
    • pp.73-80
    • /
    • 2005
  • The effect of capsaicin on apoptotic cell death was investigated in HepG2 human hepatoma cells. Capsaicin induced apoptosis in time- and dose-dependent manners. Capsaicin induced a rapid and sustained increase in intracellular $Ca^{2+}$ concentration, and BAPTA, an intracellular $Ca^{2+}$ chelator, significantly inhibited capsaicin-induced apoptosis. The capsaicin-induced increase in the intracellular $Ca^{2+}$ and apoptosis were not significantly affected by the extracellular $Ca^{2+}$ chelation with EGTA, whereas blockers of intracellular $Ca^{2+}$ release (dantrolene) and phospholipase C inhibitors, U-73122 and manoalide, profoundly reduced the capsaicin effects. Interestingly, treatment with the vanilloid receptor antagonist, capsazepine, did not inhibit either the increased capsaicin-induced $Ca^{2+}$ or apoptosis. Collectively, these results suggest that the capsaicin-induced apoptosis in the HepG2 cells may result from the activation of a PLC-dependent intracellular $Ca^{2+}$ release pathway, and it is further suggested that capsaicin may be valuable for the therapeutic intervention of human hepatomas.

Effects of Dopamine on Intracellular pH in Opossum Kidney Cells

  • Kang, Kyung-Woo;Kim, Yung-Kyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.3
    • /
    • pp.187-191
    • /
    • 2003
  • $Na^+/H^+$ exchanger (NHE) has a critical role in regulation of intracellular pH (pHi) in the renal proximal tubular cells. It has recently been shown that dopamine inhibits NHE in the renal proximal tubules. Nevertheless, there is a dearth of information on the effects of long-term (chronic) dopamine treatment on NHE activities. This study was performed to elucidate the pHi regulatory mechanisms during the chronic dopamine treatments in renal proximal tubular OK cells. The resting pHi was greatly decreased by chronic dopamine treatments. The initial rate and the amplitude of intracellular acidification by isosmotical $Na^+$ removal from the bath medium in chronically dopamine-treated cells were much smaller than those in control. Although it seemed to be attenuated in $Na^+$-dependent pH regulation system, $Na^+$-dependent pHi recovery by NHE after intracelluar acid loading in the dopamine-treated groups was not significantly different from the control. The result is interpreted to be due to the balance between the stimulation effects of lower pHi on the NHE activity and counterbalance by dopamine. Our data strongly suggested that chronic dopamine treatment increased intrinsic intracellular buffer capacity, since higher buffer capacity was induced by lower resting pHi and this effect could attenuate pHi changes under extracellular $Na^+$-free conditions in chronically dopamine-treated cells. Our study also demonstrated that intracellular acidification induced by chronic dopamine treatments was not mediated by changes in NHE activity.

Effects of Vanadate on the intracellular Calcium ion activities in mvocardial cells (심근세포내 칼슘 이온 활용도에 미치는 Vanadate 의 효과)

  • Lee, Jeong-Ryeol;Kim, U-Gyeom
    • Journal of Chest Surgery
    • /
    • v.21 no.2
    • /
    • pp.291-298
    • /
    • 1988
  • The effect of Vanadate on the isometric contraction, membrane potential and intracellular calcium ion activities of rabbit myocardial cells were investigated, using calcium selective microelectrode, filled with neutral calcium ion carrier, ETH-1001. The resting tension, the membrane potential and the intracellular calcium ion activities were recorded in normal Tyrode solution and compared with those in the contracture induced by 10 mM Vanadate. The following results were obtained: 1. The dose-response relationship between the contraction of Vanadate and twitch tension showed near-maximum response in 5mM with no corresponding changes in action potential. 2. The resting tension increased up to the amplitude of a control twitch in 10mM Vanadate with resting membrane potential, hyperpolarized. 3. Increase in intracellular calcium ion activities proceeded the contracture by 10mM Vanadate which were restored to the control level in accordance with a decrease of intracellular calcium ion activities. 4. The amplitude of contractures by 10mM Vanadate were 90-120% of the control twitch tension in which the intracellular calcium ion activities were increased about 70 times from p Ca, 7.1 in the control to p Ca, 5.8 in contractures.

  • PDF

Comparison of Quantitative Structure-Activity Relationship and Chemical Antioxidant Activity of β-Carotene and Lycopene and Their Protective Effects on Intracellular Oxidative Stress (β-Carotene과 Lycopene의 양자역학 및 화학적 항산화능과 세포 내 산화적 스트레스 보호 효과의 비교)

  • Park, Sun Young;Jung, Hana;Jhin, Changho;Hwang, Keum Taek;Kwak, Ho-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.9
    • /
    • pp.1143-1150
    • /
    • 2017
  • The aim of this study was to determine the chemical and intracellular antioxidant activities of ${\beta}$-carotene and lycopene and to compare their quantitative structure-activity relationship (QSAR). In our previous study, the second ionization energy of lycopene was higher than that of ${\beta}$-carotene, as calculated by QSAR. Chemical antioxidant activities of ${\beta}$-carotene, lycopene, and Trolox were examined by measuring ferric reducing antioxidant power (FRAP) and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. Intracellular antioxidant activities were evaluated by intracellular reactive oxygen species (ROS) and DNA fragmentation. The FRAP of lycopene was higher than that of ${\beta}$-carotene (P<0.05), and the two carotenoids had similar antioxidant activities in DPPH radical scavenging activity assay. Trolox had the greatest chemical antioxidant activities (P<0.05). When RAW264.7 cells were treated with lipopolysaccharide (LPS) (100 ng/mL) for 20 h, intracellular ROS and DNA fragmentation significantly increased (P<0.05). RAW 264.7 cells pretreated with ${\beta}$-carotene ($4{\mu}M$) and lycopene ($0.4{\sim}2{\mu}M$) for 4 h formed significantly less intracellular ROS than LPS-treated control cells (P<0.05), whereas cells with Trolox did not reduce production of intracellular ROS. In addition, cells pretreated with $2{\mu}M$ lycopene produced less intracellular ROS than those treated with ${\beta}$-carotene (P<0.05). DNA fragmentation of cells with ${\beta}$-carotene and lycopene was similar to that of LPS-treated control cells as measured by Hoechst staining. The antioxidant ability of lycopene was greater than that of ${\beta}$-carotene in the QSAR, FRAP, and intracellular ROS assays (P<0.05). ${\beta}$-Carotene and lycopene had lower antioxidant activities as measured by FRAP (P<0.05) but higher intracellular protective effects against LPS-induced oxidative stress in comparison with Trolox.

Ursolic Acid Activates Intracellular Killing Effect of Macrophages During Mycobacterium tuberculosis Infection

  • Podder, Biswajit;Jang, Woong Sik;Nam, Kung-Woo;Lee, Byung-Eui;Song, Ho-Yeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.5
    • /
    • pp.738-744
    • /
    • 2015
  • Tuberculosis is one of the most threatening infectious diseases to public health all over the world, for which Mycobacterium tuberculosis (MTB) is the etiological agent of pathogenesis. Ursolic acid (UA) has immunomodulatory function and exhibits antimycobacterial activity. However, the intracellular killing effect of UA has yet to be elucidated. The aim of this study was to evaluate the intracellular killing effect of UA during mycobacterial infection. The intracellular killing activity of UA was evaluated in the macrophage cell line THP-1 by the MGIT 960 system as well as by CFU count. The production of reactive oxygen species (ROS) and the level of nitric oxide (NO) were measured using DCF-DA and Griess reagent, respectively. Phagocytosis was observed by a fluorescence-based staining method, and the colony forming units were enumerated on 7H11 agar medium following infection. In addition, MRP8 mRNA expression was measured by qRT-PCR. UA significantly decreased the number of intracellular Mycobacterium through generation of ROS and NO. In addition, it profoundly activated the phagocytosis process of THP-1 cells during MTB-infection. Furthermore, our data demonstrated that UA activated the phagocytosis process in human monocyte cells through MRP8 induction. These data suggest that UA firmly contributes to the intracellular killing effect of macrophages during mycobacterial infection.

Development of intracellular organelle markers using modified glycolipid-binding peptides in mammalian cells (세포내 특정 소기관 타기팅 마커 개발을 위한 당지질-결합 펩타이드 변형 및 세포내 타기팅 분석)

  • Jun, Yong-Woo;Lee, Jin-A;Jang, Deok-Jin
    • Analytical Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.65-71
    • /
    • 2015
  • Intracellular organelles in eukaryotic cells play important roles in many cellular functions. Intracellular trafficking of many proteins to specific intracellular organelles is tightly regulated by various mechanisms in cells. Therefore, elucidating the targeting mechanism of novel markers for intracellular organelles is important for cellular physiology and pathology. In this study, we tried to identify the peptides which could bind to specific glycolipid in cellular membrane using GFP-fused glycolipid-binding peptides, and analyzed their cellular localization. As a result, we could identify mitochondria-, Golgi- or plasma membrane-targeting peptides. Furthermore, we found that the plasma membrane-targeting peptide was localized to the plasma membrane via electrostatic interactions. Thus, our results suggest that various glycolipid-binding peptides could be used as intracellular organelles markers.

Decrease of Intracellular pH and Activation of $Na^+-H^+$ Exchanger by Fluid Pressure in Rat Ventricular Myocytes (유체 압력에 의한 흰쥐 심실근세포 pH의 감소 및 $Na^+-H^+$ 교환체의 활성화)

  • Kim, Joon-Chul;Woo, Sun-Hee
    • YAKHAK HOEJI
    • /
    • v.55 no.3
    • /
    • pp.247-250
    • /
    • 2011
  • An increase in ventricular pressure can alter cardiac excitation and contraction. Recent report has demonstrated that fluid pressure (FP) suppresses L-type $Ca^{2+}$ current with acceleration of the current inactivation in ventricular myocytes. Since the L-type $Ca^{2+}$ channels known to be regulated by intracellular pH ($pH_i$), this study was designed to explore whether pressurized fluid flow affects pHi in isolated rat ventricular myocytes. A flow of pressurized (~16 dyne/$cm^2$) fluid, identical to that bathing the myocytes, was applied onto single myocytes, and intracellular $H^+$ concentration was monitored using confocal $H^+$ imaging. FP significantly decreased $pH_i$ by $0.07{\pm}0.01$ pH units (n=16, P<0.01). Intracellular acidosis enhances the activity of $Na^+-H^+$ exchanger (NHE). Therefore, we examined if the NHE activity is increased by FP using the NHE inhibitor, HOE642. Although HOE642 did not alter $pH_i$ in control conditions, it decreased $pH_i$ in cells pre-exposed to FP, suggesting enhancement of NHE activity by FP. In addition, FP-induced intracellular acidosis was larger in cells pre-treated with HOE642 than in cells under the control conditions. These results suggest that FP induces intracellular acidosis and that NHE may contribute to extrude $H^+$ during the FP-induced acidosis in rat ventricular myocytes.

Characterization of CTLA-4 Antigen Expression: Identification of Molecules Composing Intracellular CTLA-4 Multiprotein Complex (CTLA-4 항원의 활성 T 세포내 발현의 특성: 세포질내 단백복합체 구성분자의 동정)

  • Rhim, Dae-Cheol;Chung, Yong-Hoon
    • IMMUNE NETWORK
    • /
    • v.2 no.1
    • /
    • pp.35-40
    • /
    • 2002
  • Background: CTLA-4 (Cytotoxic T Lymphocyte associated Antigen 4, CD152) has been known as a homologue of CD28, an accessory molecule providing a key costimulatory signal for successful antigen-driven activations of T lymphocyte. Most of biochemical and cell biological characteristics of the CD152 protein remain unknown while those of CD28 have been characterized in detail. Methods: In this study CD152 expression in both $CD4^+$ and $CD8^+$ PBLs was studied by using flow cytometry. And intracellular CD152 multiprotein complex was purified and used for generating antibodies recognizing proteins composing of intracellular CTLA-4 multi protein complex. Results: Level of surface expression of this molecule was peaked at 2 days of PHA stimulation in flow cytometric analysis. 40~45% of PHA blast cells were $CD152^+$ in both of two subsets at this stage and the level of expression were equivalent in both two subsets. Contrary to this surface expression, intracellular expression was peaked at day 3 and it was preferentially induced in $CD8^+$ cells and about 60% of $CD8^+$ cells were $CD152^+$ at this stage. High molecular weight (>350 kD) intacellular CD152 protein complex purified by using preparative electrophoresis were immunized into rabbits and then 3 different anti-P34PC4, anti-P34PC7 and anti-P34PC8 antibodies were obtained. Using these 3 antibodies two unknown antigens associated with intracellular CD152 multiprotein complex were found and their molecular weights were 54 kD and 75 kD, respectively. Among these, the former was present as 110 kD homodimer in non-reducing condition. Conclusion: It seemed that 34 kD intracellular CD152 molecule forms high molecular weight multiprotein complex at least with 2 proteins of 75 kD monomer and 110 kD homodimer.