Browse > Article

Decrease of Intracellular pH and Activation of $Na^+-H^+$ Exchanger by Fluid Pressure in Rat Ventricular Myocytes  

Kim, Joon-Chul (College of Pharmacy, IDRD, Chungnam National University)
Woo, Sun-Hee (College of Pharmacy, IDRD, Chungnam National University)
Publication Information
YAKHAK HOEJI / v.55, no.3, 2011 , pp. 247-250 More about this Journal
Abstract
An increase in ventricular pressure can alter cardiac excitation and contraction. Recent report has demonstrated that fluid pressure (FP) suppresses L-type $Ca^{2+}$ current with acceleration of the current inactivation in ventricular myocytes. Since the L-type $Ca^{2+}$ channels known to be regulated by intracellular pH ($pH_i$), this study was designed to explore whether pressurized fluid flow affects pHi in isolated rat ventricular myocytes. A flow of pressurized (~16 dyne/$cm^2$) fluid, identical to that bathing the myocytes, was applied onto single myocytes, and intracellular $H^+$ concentration was monitored using confocal $H^+$ imaging. FP significantly decreased $pH_i$ by $0.07{\pm}0.01$ pH units (n=16, P<0.01). Intracellular acidosis enhances the activity of $Na^+-H^+$ exchanger (NHE). Therefore, we examined if the NHE activity is increased by FP using the NHE inhibitor, HOE642. Although HOE642 did not alter $pH_i$ in control conditions, it decreased $pH_i$ in cells pre-exposed to FP, suggesting enhancement of NHE activity by FP. In addition, FP-induced intracellular acidosis was larger in cells pre-treated with HOE642 than in cells under the control conditions. These results suggest that FP induces intracellular acidosis and that NHE may contribute to extrude $H^+$ during the FP-induced acidosis in rat ventricular myocytes.
Keywords
fluid pressure; intracellular pH; ventricular myocytes; $Na^+-H^+$ exchanger; HOE642;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kurachi, Y. : The effects of intracellular protons on electrical activity of single ventricular cells. Pflgers Arch. 394, 264 (1982).   DOI   ScienceOn
2 Kaibara, M. and Kameyama, M. : Inhibition of the calcium channel by intracellular protons in single ventricular myocytes of the guinea-pig. J. Physiol. 403, 621 (1988).   DOI
3 Karmazyn, M., Gan, X. T., Humphreys, R. A., Yoshida, H. and Kusumoto, K. : The myocardial $Na^+-H^+$ exchange. Structure, regulation, and its role in heart disease. Circ. Res. 85, 777 (1999).   DOI   ScienceOn
4 Yamazaki, T., Komuro, I., Kudoh, S., Zou, Y., Nagai, R., Aikawa, R., Uozumi, H. and Yazaki, Y. : Role of ion channels and exchangers in mechanical stretch-induced cardiomyocyte hypertrophy. Circ. Res. 82, 430 (1998).   DOI   ScienceOn
5 Cingolani, H. E., Perez, N. G., Pieske, B., von Lewinski, D. and Camilion de Hurtado, M. C. : Stretch-elicited $Na^+/H^+$ exchanger activation: the autocrine/paracrine loop and its mechanical counterpart. Cardiovasc. Res. 57, 953 (2003).   DOI   ScienceOn
6 Ch'en F. F. T., Dilworth, E., Swietach, P., Goddard, R. S. and Vaughan-Jones, R. D. : Temperature dependence of $Na^+-H^+$ exchange, $Na^+-HCO_3$ - co-transport, intracellular buffering and intracellular pH in guinea-pig ventricular myocytes. J. Physiol. 522, 715 (2003).
7 Pedersen, S. F., O'Donnell, M. E., Anderson, S. E. and Cala, P. M. : Physiology and pathophysiology of $Na^+/H^+$ exchange and $Na^+-K^+-Cl^-$ cotransport in the heart, brain, and blood. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R1 (2006).   DOI
8 Lakatta, E. G. : Cardiovascular regulatory mechanisms in advanced age. Physiol. Rev. 73, 413 (1993).   DOI
9 Scholz, W., Albus, U., Counillon, L., Gogelein, H., Lang, H. J., Linz, W., Weichert, A. and Scholkens, B. A. : Protective effects of Hoe 642, a selective sodium-hydrogen exchange subtype 1 inhibitor, on cardiac ischemia and reperfusion. Cardiovasc. Res. 29, 260 (1996).
10 Xue, Y. X., Aye, N. N. and Hashimoto, K. : Antiarrhythmic effects of Hoe 642, a novel $Na^+/H^+$-exchange inhibitor on ventricular arrhythmias in animal hearts. Eur. J. Pharmacol. 317, 309 (1996).   DOI
11 Lab, M. J. : Mechanoelectric feedback (transduction) in heart: concepts and implications. Cardiovasc. Res. 32, 3 (1996).   DOI
12 Lerman, B. B., Burkhoff, D., Yue, D. T., Franz, M. R. and Sagawa, K. : Mechanoelectric feedback: independent role of preload and contractility in modulation of canine ventricular excitability. J. Clin. Invest. 76, 1843 (1985).   DOI
13 Conwell, J., Cocalis, M. and Erickson, L. : EAT to the beat: 'ectopic' atrial tachycardia caused by catheter whip. Lancet 342, 740 (1993).
14 Levine, J. H., Guarnieri, T., Kadish, A. H., White, R. I., Calkins, H. and Kan, J. S. : Changes in myocardial repolarization in patients undergoing balloon valvuloplasty for congenital pulmonary stenosis: evidence for contraction-excitation feedback in humans. Circulation 77, 70 (1988).   DOI   ScienceOn
15 Franz, M. R., Burkhoff, D., Yue, D. T. and Sagawa, K. : Mechanically induced action potential changes and arrhythmia in isolated and in situ canine hearts. Cardiovasc. Res. 23, 213 (1989).   DOI   ScienceOn
16 Nazir, S. A. and Lab, M. J. : Mechanoelectric feedback and atrial arrhythmias. Cardiovasc. Res. 32, 52 (1996).   DOI
17 Woo, S. H., Risius, T. and Morad, M. : Modulation of local $Ca^{2+}$ release sites by rapid fluid puffing in rat atrial myocytes. Cell Calcium 41, 397 (2007).   DOI   ScienceOn
18 Lee, S., Kim, J. C., Li, Y., Son, M. J. and Woo, S. H. : Fluid pressure modulates L-type$ Ca^{2+}$ channel via enhancement of $ Ca^{2+}$-induced $ Ca^{2+}$ release in rat ventricular myocytes. Am. J. Physiol. 294, C966 (2008).   DOI
19 Olsen, S.-P., Clapham, D. E. and Davies, P. F. : Haemodynamic shear stress activates a $K^+$ current in vascular endothelial cells. Nature 331, 168 (1988).   DOI   ScienceOn