• Title/Summary/Keyword: Intra-Body communication

Search Result 8, Processing Time 0.03 seconds

Intra-Body Communication System for Bio Sensors (생체센서를 위한 인체통신시스템)

  • Jung, Jae-Wook;Kang, Jung-Mo;Kim, Myung-Sik;Oh, Woo-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.9
    • /
    • pp.1749-1754
    • /
    • 2007
  • In this paper, we propose a new Intra-body communication system for bio-sensor which is one of applications in PAN(Personal Area Network) using body channel. The communication systems for bio-sensor network usually transmits a lot of data acquired in sensor to the receiver in wrist or waist. So we deign the intra-body modem with high data rate, low power, and small size which are achieved by baseband communication techniques. It is noted that the baseband transmission does not requires any analog IF and RF frontends, and can be operated in lower frequency than bandpass transmission. The proposed modem operates at 10MHz band according to the characteristics of intra-body channel, and shows the capability of 5Mbps data rate at distance of 20cm, with $BER=10^{-5}$. In addition, we implement the modem within $2{\times}2cm$ area.

Electrostatic Coupling Intra-Body Communication Based on Frequency Shift Keying and Error Correction (FSK 통신 및 에러 정정을 통한 Intra-Body Communication)

  • Cho, Seongho;Park, Daejin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.4
    • /
    • pp.159-166
    • /
    • 2020
  • The IBC (Intra-Body Communication) benefits from a wireless communication system for exchanging various kinds of digital information through wearable electronic devices and sensors. The IBC using the human body as the transmission channel allows wireless communication without the transmitting radio frequency waves to the air. This paper discusses the results of experiments on electrostatic coupling IBC based on FSK (Frequency Shift Keying) and 1 bit error correction. We implemented FSK communication and 1 bit error correction algorithm using the MCU boards and aluminum tape electrodes. The transmitter modulates digital data using 50% duty square wave as carrier signal and transmits data through human body. The receiver performs ADC (Analog to Digital Conversion) on carrier signal from human body. In order to figure out the frequency of carrier signal from ADC results, we applied zero-crossing algorithm which is used to detect the edge characteristic in computer vision. Experiment results shows that digital data modulated as square wave can be successfully transmitted through human body by applying the proposed architecture of a 1ch GPIO as a transmitter and 1ch ADC for as a receiver. Also, this paper proposes 1 bit error correction technique for reliable IBC. This technique performs error correction by utilizing the feature that carrier signal has 50% duty ratio. When 1 bit error correction technique is applied, the byte error rate at receiver side is improved around 3.5% compared to that not applied.

Transmission Latency-Aware MAC Protocol Design for Intra-Body Communications (인체 채널에서 전자기파 전송 지연 특성을 고려한 다중 매체 제어 프로토콜 설계)

  • Kim, Seungmin;Park, JongSung;Ko, JeongGil
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.8
    • /
    • pp.201-208
    • /
    • 2019
  • Intra-Body Communication (IBC) is a communication method using the human body as a communication medium. The fact that our human body consists of water and electrolyte allow such communication method could work and have strength in low-power. However, because the IBC directly affects to human body by using it as a medium, there was a lack of research in communication protocols of each communication layer. In this paper, we suggests MAC parameters which affects the performance of communication in human body channel, and propose new MAC protocol. Our results shows that our MAC is suitable for supporting high data rate applications with comparable radio duty cycle performance.

A Telemetry System using Intra-body Communication for Neural Prosthesis (체내 통신을 이용한 신경 보철용 원격 통신 시스템)

  • Lee, Tae-Hyung;Song, Jong-Keun;Lee, Choong-Jae;Kim, Sung-June
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.2 s.314
    • /
    • pp.18-23
    • /
    • 2007
  • Intra-body communication' is a wireless communication technology that uses a body as a transmission medium for electrical signals. Generally, an 'earth ground' is used to create an electric field for operating the system; however this operating method could not apply to telemetry for implanted neural prosthetic devices. So this paper suggests a newly designed intra-body communication for neural prosthetic devices. A floating system which has a couple of electrodes with body was studied to remove an influence of the 'earth ground'. We found that 10MHz is the most suitable carrier frequency in skin experiments and over 3MHz in subcutaneous experiments. The system has been applied to a current stimulator circuit for cochlear implant that uses pulse width modulation (PWM) method at 480kbps rate successfully.

Distributed Antenna System for Intra-vehicle Wireless Energy Transfer (차량 내 무선 에너지 전송을 위한 분산 안테나 시스템)

  • Kim, Yeonghwan;Kwon, Kuhyung;Lee, Chungyong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.2
    • /
    • pp.3-8
    • /
    • 2017
  • This paper considers an application of distributed antenna system (DAS) to a system of intra-vehicle wireless energy transfer (WET). The intra-vehicle WET system has features such as limited mobility of energy receiver, static channel environment and short distance between transmitter and human body. Under these conditions, location of transmitter highly affects the amount of energy received by human body and the energy received by energy receiving devices. We compare centralized antenna system (CAS) and the DAS in intra-vehicle WET system by simulation. The results show the DAS has superior performance to the CAS.

Identity-Based Key Management Scheme for Smart Grid over Lattice

  • Wangke, Yu;Shuhua, Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.1
    • /
    • pp.74-96
    • /
    • 2023
  • At present, the smart grid has become one of the indispensable infrastructures in people's lives. As a commonly used communication method, wireless communication is gradually, being widely used in smart grid systems due to its convenient deployment and wide range of serious challenges to security. For the insecurity of the schemes based on large integer factorization and discrete logarithm problem in the quantum environment, an identity-based key management scheme for smart grid over lattice is proposed. To assure the communication security, through constructing intra-cluster and inter-cluster multi-hop routing secure mechanism. The time parameter and identity information are introduced in the relying phase. Through using the symmetric cryptography algorithm to encrypt improve communication efficiency. Through output the authentication information with probability, the protocol makes the private key of the certification body no relation with the distribution of authentication information. Theoretic studies and figures show that the efficiency of keys can be authenticated, so the number of attacks, including masquerade, reply and message manipulation attacks can be resisted. The new scheme can not only increase the security, but also decrease the communication energy consumption.

Neural Interface-based Hyper Sensory Device Technology Trend (신경 인터페이스 기반 초감각 디바이스 기술 동향)

  • Kim, H.J.;Byun, C.W.;Kim, S.E.;Lee, J.I.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.6
    • /
    • pp.69-80
    • /
    • 2018
  • Sensory devices have been developed to help people with disabled or weakened sensory functions. Such devices play a role in collecting and transferring data for the five senses (vision, sound, smell, taste, and tactility) and also stimulating nerves. To provide brain or prosthesis devices with more sophisticated senses, hyper sensory devices with a high resolution comparable to or even better than the human system based on individual neuron cells are essential. As for data collecting components, technologies for sensors with higher resolution and sensitivity, and the conversion of algorithms from physical sensing data to human neuron signals, are needed. Converted data can be transferred to neurons that are responsible for human senses through communication with high security, and neural interfaces with high resolution. When communication deals with human data, security is the most important consideration, and intra-body communication is expected to be a candidate with high priority. To generate sophisticated human senses by modulating neurons, neural interfaces should modulate individual neurons, and therefore a high resolution compared to human neurons (~ several tens of um) with a large area covering neuron cells for human senses (~ several tens of mm) should be developed. The technological challenges for developing sensory devices with human and even beyond-human capabilities have been tackled by various research groups, the details of which are described in this paper.

Distributed Time Division Piconet Coexistence Using Local Time Offset Exchange (로컬 오프셋을 이용한 분산 시간 분리 피코넷 충돌회피 방법론)

  • Park, Yongsuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1447-1453
    • /
    • 2014
  • Wireless Body Area Networks (WBAN), standardized as IEEE 802.15.6, enable digital devices on/around the human body to communicate with one another. WBAN is essentially a person's piconet consisting of a master (mobile) device and several slave devices, which follows his/her mobility pattern, and hence, occasionally collides with another piconet as people meet or pass by. As such, a mechanism to detect collision and avoid interference is needed for intra-piconet communications. In this paper, we focus on this notorious problem of piconet collision and propose Distributed Time Division Piconet Coexistence (DTDPC) using local time offset exchange as a simple, attractive solution. The proposed DTDPC provides different level of services for various applications. Besides our simulation results have shown that the proposed solution outperforms the conventional CSMA protocols.