DOI QR코드

DOI QR Code

Distributed Antenna System for Intra-vehicle Wireless Energy Transfer

차량 내 무선 에너지 전송을 위한 분산 안테나 시스템

  • Kim, Yeonghwan (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Kwon, Kuhyung (Department of Electrical and Electronic Engineering, Yonsei University) ;
  • Lee, Chungyong (Department of Electrical and Electronic Engineering, Yonsei University)
  • 김영환 (연세대학교 전기전자공학과) ;
  • 권구형 (연세대학교 전기전자공학과) ;
  • 이충용 (연세대학교 전기전자공학과)
  • Received : 2016.09.01
  • Accepted : 2017.01.24
  • Published : 2017.02.25

Abstract

This paper considers an application of distributed antenna system (DAS) to a system of intra-vehicle wireless energy transfer (WET). The intra-vehicle WET system has features such as limited mobility of energy receiver, static channel environment and short distance between transmitter and human body. Under these conditions, location of transmitter highly affects the amount of energy received by human body and the energy received by energy receiving devices. We compare centralized antenna system (CAS) and the DAS in intra-vehicle WET system by simulation. The results show the DAS has superior performance to the CAS.

본 논문은 차량 내부에서 무선 에너지 전송 기술을 지원하기 위해 분산 안테나 시스템의 사용을 제안한다. 차량 내 무선 에너지 전송 시스템은 에너지 수신 단말기의 이동이 제한적이고, 채널 환경이 정적이며, 인체가 송신기와 가까운 특징을 갖는다. 이러한 상황에서 송신기의 배치는 인체에서의 수신 에너지와 에너지 수신 단말기에서의 수신 에너지의 양에 큰 영향을 미친다. 이에 본 논문은 기존 무선 통신 시스템에서 사용되는 중앙 집중형 안테나 시스템과 분산 안테나 시스템을 적용하였을 때의 차량 내 무선 에너지 전송 성능을 모의실험을 통해 비교하고, 분산 안테나 시스템이 더 좋은 성능을 가짐을 보인다.

Keywords

References

  1. R. Zhang and C. K. Ho, "MIMO Broadcasting for Simultaneous Wireless Information and Power Transfer," IEEE Transactions on Wireless Communi cations, Vol. 12, no. 5, pp. 1989-2001, May 2013. https://doi.org/10.1109/TWC.2013.031813.120224
  2. K. Huang and V. K. N. Lau, "Enabling Wireless Power Transfer in Cellular Networks: Architecture, Modeling and Deployment," IEEE Transactions on Wireless Communications, Vol. 13, no. 2, pp. 902-912, February 2014. https://doi.org/10.1109/TWC.2013.122313.130727
  3. P. Grover and A. Sahai, "Shannon meets Tesla: Wireless information and power transfer," 2010 IEEE International Symposium on Information Theory, pp. 2363-2367, 2010,
  4. X. Lu, P. Wang, D. Niyato, D. I. Kim and Z. Han, "Wireless Charging Technologies : Fundamentals, Standards, and Network Applications," IEEE Communications Surveys & Tutorials, Vol. 18, no. 2, pp. 1413-1452, Secondquarter 2016. https://doi.org/10.1109/COMST.2015.2499783
  5. N. Antwi, B. Tobias, O. Thomas and R. Leonhard, "Analysis of Passive RF-DC Power Rectification and Harvesting Wireless RF Energy for Micro-watt Sensors," AIMS Energy, Vol. 3, no. 2, pp. 184-200, April 2015. https://doi.org/10.3934/energy.2015.2.184
  6. H. J. Visser and R. J. M. Vullers, "RF Energy Harvesting and Transport for Wireless Sensor Network Applications: Principles and Requirements," Proceedings of the IEEE, Vol. 101, no. 6, pp. 1410-1423, June 2013. https://doi.org/10.1109/JPROC.2013.2250891
  7. H. Ju and R. Zhang, "Throughput Maximization in Wireless Powered Communication Networks," IEEE Transactions on Wireless Communications, Vol. 13, no. 1, pp. 418-428, January 2014. https://doi.org/10.1109/TWC.2013.112513.130760
  8. J. Jang, "Leakeage Signal Control Based Precoder Design for ESINR Maximization in FD-WPCN," M.S. thesis, School of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea, 2016.
  9. I. Zuazola, J. Elmirghani, and J. Batchelor, "High-speed ultra-wide band in-car wireless channel measurements," IET communications, Vol. 3, no. 7, pp. 1115-1123, July 2009. https://doi.org/10.1049/iet-com.2008.0135