H.264 비디오 부호화 표준 방식은 널리 사용되고 있지만, 고화질 비디오의 해상도에 비해 상대적으로 작은 크기의 매크로블록을 사용하기 때문에 고화질 비디오를 부호화하는데 한계가 있다. 본 논문에서는 고화질 비디오 부호화를 위해 기존의 매크로블록의 크기를 확장하고, 확장된 매크로블록을 기반으로 새로운 화면내 부호화 방법을 제안한다. 휘도 신호의 경우, 기존의 인트라 $4{\times}4$ 예측과 인트라 $16{\times}16$ 예측을 각각 인트라 $8{\times}8$ 예측과 인트라 $32{\times32}$ 예측으로 확장한다. 색차 신호의 경우에는, 인트라 ${8\times}8$ 예측을 인트라 $16{\times}16$ 예측으로 확장한다. 또한 매크로블록의 확장으로 기본 부호화 블록의 크기가 $8{\times}8$로 커짐에 따라, $8{\times}8$ 정수 이산 코사인 변환을 사용한다. 이 논문에서 제안한 방법을 사용하여 고화질 비디오를 부호화 할 경우, 기존의 방법에 비해 약 5.32% 정도 비트수가 감소했으며 약 0.23dB 정도 화질이 개선되었다.
HEVC(High Efficiency Video Coding) 보다 뛰어난 압축 성능을 갖는 차세대 비디오 부호화 표준 후보 기술에 대한 탐색과 검증을 진행한 JVET(Joint Video Exploration Team)은 기술 검증을 위한 참조 SW 코덱인 JEM(Joint Exploration Model)을 공개하였다. JEM은 HEVC의 35개 보다 증가한 67개의 화면내 예측 모드를 사용하고 있으며, 이에 따른 예측 모드 부호화에 대한 부담으로 부호화 성능 개선에 제한이 따른다. 본 논문에서는 화면내 예측 모드의 선택 확률을 분석하고, 이를 바탕으로 보다 효율적인 화면내 예측 모드 부호화 기법과 그 기법의 효율적인 엔트로피 부호화를 위한 문맥 모델링 기법을 제안한다. 실험결과 제안 기법은 AI(All Intra) 부호화 구조에서 JEM 7.0 대비 0.02%의 BD-rate 이득을 보였으며, 향후 추가적인 성능 향상을 위한 문맥 모델링 최적화에 대한 연구가 필요하다.
저전송률 영상통신을 위한 H.263 Version 2에 포함된 Advanced Intra Coding(AIC) 모드는 INTRA 매크로블록별로, DCT 계수의 예측을 위하여 세가지 Submode를 선택한 후, 선택된 submode에 따라 DCT계수 주사 방향과 양자화 방법, VLC 테이블을 달리 적용한다. 이 기술을 비디오 압축에 적용함으로써 기존의 H.263 baseline에 비해 더 높은 압축율과 객관적 화질의 향상을 얻을 수 있다. Advanced Intra Coding 모드에서 최적화된 방향 선택은 압축율을 최대로 얻을 수 있으나, 방향 선택을 위한 추가적인 메모리를 요구하고 계산량도 많아지게 된다. 본 논문은 ITU-T의 H.263 Version 2에서 제안하는 Advanced Intra Coding 모드를 사용할 때 필요한 DCT 계수의 예측 방향 선택을 위한 간략화 된 방법을 제안한다. 기존의 방법과 비교하여 성능이 비슷하면서 계산량이 간단하고, 메모리도 절약할 수 있는 방법을 제안함으로써, 최적화된 H.263 시스템을 구현하는 것이 목적이다.
H.264/AVC의 확장 표준으로 제정된 SVC(Scalable Video Coding)는 공간적 확장성의 압축 효율을 높이기 위해 기존 H.264/AVC에서 제공하는 인트라 예측과 인터 예측뿐만 아니라 계층 간 예측을 추가로 수행한다. 그로인해 부호화 계산량이 더욱 증가되는 문제점이 있다. 본 논문에서는 공간적 향상 계충에서 인트라 예측 모드를 효율적으로 선택하는 방법을 제안한다. 제안한 방법은 실험을 통한 Intra_BL 모드의 RD 값을 이용하여 미리 Intra_BL 모드를 선택한 후, 나머지 모드를 다 수행하지 않고 대표적인 DC 모드만을 비교하여 빠른 인트라 예측 모드를 결정한다. 실험 결과 화질 저하는 적은 데 비해 인트라 예측 모드 부호화 시간은 약 59% 감소되었다.
저전송률 영상통신을 위한 H.263+에 포함된 Advanced Intra Coding(AIC) 모드는 인트라매크로블록 별로 DCT 계수의 예측을 위한 세가지 예측 방향 중 하나를 선택한 후, 선택된 예측 방향에 따라 DCT 계수 주사 방향과 양자화 방법, 그리고 VLC 테이블을 달리 적용한다. 이 방법을 비디오 압축에 적용하면 기존의 H.263 기본 부호화 방법에 비해 더 높은 압축율과 객관적 화질의 향상을 얻을 수 있다. 본 논문은 ITU-T의 H.263+에서 제안하는 Advanced Intra Coding 모드를 사용할 때 필요한 DCT 계수의 예측 방향 선택을 위한 간략화된 방법을 제안한다. 기존의 방법과 비교하여 부호화 성능이 비슷하면서, 계산량이 약 1/7로 간단하고 메모리도 절약할 수 있다.
최근 딥러닝을 적용하는 비디오 압축에 대한 연구가 활발히 진행되고 있다. 특히, 화면내 예측 부호화의 성능 한계를 극복할 수 있는 방안으로 딥러닝 기반의 화면내 예측 부호화 기술이 연구되고 있다. 본 논문은 신경망 기반 문맥적응적 화면내 예측 모델의 학습기법과 그 부호화 성능분석을 제시한다. 즉, 본 논문에서는 주변 참조샘플의 문맥정보를 입력하여 현재블록을 예측하는 기존의 합성곱 신경망(CNN: Convolutional Neural network) 기반의 화면내 예측 모델을 학습한다. 학습된 화면내 예측 모델을 HEVC(High Efficiency Video Coding)의 참조 소프트웨어인 HM16.19에 추가적인 화면내 예측모드로 구현하고 그 부호화 성능을 분석하였다. 실험결과 학습한 예측 모델은 HEVC 대비 AI(All Intra) 모드에서 0.28% BD-rate 부호화 성능 향상을 보였다. 또한 비디오 부호화 블록분할 구조를 고려하여 학습한 경우의 성능도 확인하였다.
Journal of information and communication convergence engineering
/
제7권4호
/
pp.501-506
/
2009
In the H.264/ AVC video coding standard, the intra-prediction coding with various block sizes offers a considerably high improvement in coding efficiency compared to previous standards. In order to achieve this, H.264/AVC uses the Rate-distortion optimization (RDO) technique to select the best intraprediction mode for a macroblock, and it brings about the drastic increase of the computation complexity of H.264 encoder. To reduce the computation complexity and stabilize the coding performance on visual quality, this paper proposed a fast intra-prediction mode decision algorithm using non-parametric thresholds and simplified directional masks. The use of nonparametric thresholds makes the intra-coding performance not be dependent on types of video sequences and simplified directional masks reduces the compuation loads needed by the calculation of local edge information. Experiment results show that the proposed algorithm is able to reduce more than 55% of the whole encoding time with a negligible loss in PSNR and bitrates and provides the stable performance regardless types of video sequences.
본 논문에서는 H.264/MPEG-4 AVC의 확장표준으로 제정된 SVC(Scalable Video Coding)에서 화면 내 예측 모드를 효율적으로 선택하는 방법을 제안한다. 제안 방법은 공간 향상 계층에서의 화면 내 예측 모드의 통계적 분석을 기반으로 매크로블록의 복잡도 특성에 따라 화면 내 예측 모드를 결정하고 Intra_BL 모드의 RD 값을 사용하여 Intra_BL 모드를 선 결정한다. 실험결과 제안한 방법은 화면 내 예측 모드의 부호화 시간을 54.67% 감소시키는 것에 반해 화질의 열화가 매우 작음을 보였다. 특히 낮은 QP 값에서는 미비한 PSNR의 감소와 약 0.011% 정도의 비트율 증가를 보였고, 높은 QP 값에서는 약 0.01dB 미만의 PSNR 감소와 0.249% 정도의 비트율이 증가하였다.
HEVC 표준에서 변환 계수 부호화 과정은 비트스트림에 포함되는 정보를 직접 부호화하는 핵심 부분으로 변환 계수 주사와 엔트로피 부호화를 포함한다. 최근, JCT-VC(Joint Collaborative Team on Video Coding)는 HEVC 위원회 초안(Committee Draft)을 완성했다. 본 논문에서는 HEVC 표준의 변환 계수 부호화 기술을 설명하고, 화면내 부호기에서의 변환 계수 발생확률을 고려한 효율적인 변환 계수 부호화 기술을 제안한다. 제안하는 방법은 기존 HEVC 변환 계수 부호화 기술에 비해 평균 0.74%의 BD-Rate를 절약한다.
IEIE Transactions on Smart Processing and Computing
/
제5권5호
/
pp.323-326
/
2016
High Efficiency Video Coding (HEVC) adopts intra transform skip mode, in which a residual block is directly quantized in the pixel domain without transforming the block into the frequency domain. Intra transform skip mode provides a significant coding gain for screen content. However, when intra-prediction errors are not transformed, the errors are often correlated along the intra-prediction direction. This paper introduces a residual differential pulse code modulation (DPCM) method for the intra-predicted and transform-skipped blocks to remove redundancy. The proposed method performs pixel-by-pixel residual prediction along the intra-prediction direction to reduce the dynamic range of intra-prediction errors. Experimental results show that the transform skip mode's Bjøntegaard delta rate (BD-rate) is improved by 12.8% for vertically intra-predicted blocks. Overall, the proposed method shows an average 1.2% reduction in BD-rate, relative to HEVC, with negligible computational complexity.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.