Journal of the Institute of Electronics Engineers of Korea SP
/
v.45
no.5
/
pp.72-78
/
2008
Although the H.264 video coding scheme is popular, it is not efficient for high-definition (HD) video coding because the size of its macroblock is relatively small for the HD video resolution. In this paper, we propose a new intra coding scheme based on the enlarged macroblock size. For the luminance component, intra $4{\times}4$ prediction and intra $16{\times}16$ prediction in H.264 are scaled into intra $8{\times}8$ prediction and intra $32{\times}32$ prediction, respectively. For the chrominance components, intra $8{\times}8$ prediction is extended to intra $16{\times}16$ prediction. Along with the $8{\times}8$ basic coding block size, an $8{\times}8$ integer discrete cosine transform (DCT) is used. Experimental results show that the proposed algorithm improves coding efficiency of the intra coding for HD video: PSNR gain by 0.23dB and bit-rate reduction by 5.32% on average.
Park, Dohyeon;Lee, Jinho;Kang, Jung Won;Kim, Jae-Gon
Journal of Broadcast Engineering
/
v.23
no.4
/
pp.495-502
/
2018
JVET (Joint Video Exploration Team) which explored evolving technologies of video coding with capabilities beyond HEVC (High Efficiency Video Coding), released a references software codec named the Joint Exploration Model (JEM) for performance verification of coding technologies. JEM has 67 intra prediction modes that extend the 35 modes of HEVC for intra prediction. Therefore, the enhancement of the coding performance is limited due to the overhead of prediction mode coding. In this paper, we analyze the probabilities of prediction modes selections, and then we propose a more efficient intra prediction mode coding based on the results of analyzed mode occurrence. In addition, we propose a context modeling for CABAC (Context-Adaptive Binary Arithmetic Coding) of the proposed mode coding. Experimental results show that the BD-rate gain is 0.02% on the AI (All Intra) coding structure compared to JEM 7.0. We need to optimize context modeling for additional coding performance enhancement.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2000.11b
/
pp.57-62
/
2000
저전송률 영상통신을 위한 H.263 Version 2에 포함된 Advanced Intra Coding(AIC) 모드는 INTRA 매크로블록별로, DCT 계수의 예측을 위하여 세가지 Submode를 선택한 후, 선택된 submode에 따라 DCT계수 주사 방향과 양자화 방법, VLC 테이블을 달리 적용한다. 이 기술을 비디오 압축에 적용함으로써 기존의 H.263 baseline에 비해 더 높은 압축율과 객관적 화질의 향상을 얻을 수 있다. Advanced Intra Coding 모드에서 최적화된 방향 선택은 압축율을 최대로 얻을 수 있으나, 방향 선택을 위한 추가적인 메모리를 요구하고 계산량도 많아지게 된다. 본 논문은 ITU-T의 H.263 Version 2에서 제안하는 Advanced Intra Coding 모드를 사용할 때 필요한 DCT 계수의 예측 방향 선택을 위한 간략화 된 방법을 제안한다. 기존의 방법과 비교하여 성능이 비슷하면서 계산량이 간단하고, 메모리도 절약할 수 있는 방법을 제안함으로써, 최적화된 H.263 시스템을 구현하는 것이 목적이다.
To improve coding performance of scalable video coding which is an emerging video coding standard as an extension of H.264/AVC, SVC uses not only intra prediction and inter prediction but inter-layer prediction. This causes a problem that computational complexity is increased. In this paper, we propose an efficient intra prediction mode decision method in spatial enhancement layer to reduce the computational complexity. The proposed method selects Inra_BL mode using RD cost of Intra_BL in advance. After that, intra mode is decided by only comparing DC modes. Experimental results show that the proposed method reduces 59% of the computation complexity of intra prediction coding, while the degradation in video quality is negligible.
The Advanced Intra Coding(AIC) mode included in the H.263+ which is for video ceding at low bit rates, selects one prediction direction of DCT coefficients among three directions for every intra macroblock. Based ()n the selected direction, It uses a different DCT scanning order, quantization scheme, and VLC table. The use of the AIC mode brings higher compression ratio and improved PSNR than the H.263 baseline. This paper proposes a simplified submode selection method for a direction of the DCT coefficient prediction for advanced ultra coding in H.263. Compared to the conventional method the proposed simplified method can achieve a similar coding Performance at computational complexity reduced to 1/7 and with much less memory requirement. The proposed method will be useful in implementing a simplified H.263 system.
Recently, with the development of deep learning and artificial neural network technologies, research on the application of neural network has been actively conducted in the field of video coding. In particular, deep learning-based intra prediction is being studied as a way to overcome the performance limitations of the existing intra prediction techniques. This paper presents a method of context-adaptive neural network-based intra prediction model training and its coding performance analysis. In other words, in this paper, we implement and train a known intra prediction model based on convolutional neural network (CNN) that predicts a current block using contextual information from reference blocks. Then, we integrate the trained model into HM16.19 as an additional intra prediction mode and evaluate the coding performance of the trained model. Experimental results show that the trained model gives 0.28% BD-rate bit saving over HEVC in All Intra (AI) coding mode. In addition, the coding performance change of training considering block partition is also presented.
Journal of information and communication convergence engineering
/
v.7
no.4
/
pp.501-506
/
2009
In the H.264/ AVC video coding standard, the intra-prediction coding with various block sizes offers a considerably high improvement in coding efficiency compared to previous standards. In order to achieve this, H.264/AVC uses the Rate-distortion optimization (RDO) technique to select the best intraprediction mode for a macroblock, and it brings about the drastic increase of the computation complexity of H.264 encoder. To reduce the computation complexity and stabilize the coding performance on visual quality, this paper proposed a fast intra-prediction mode decision algorithm using non-parametric thresholds and simplified directional masks. The use of nonparametric thresholds makes the intra-coding performance not be dependent on types of video sequences and simplified directional masks reduces the compuation loads needed by the calculation of local edge information. Experiment results show that the proposed algorithm is able to reduce more than 55% of the whole encoding time with a negligible loss in PSNR and bitrates and provides the stable performance regardless types of video sequences.
In this parer, we propose an efficient intra prediction mode decision scheme in Scalable Video Coding(SVC) which is an emerging video coding standard as an extension of H.264/MPEG-4 AVC(Advanced Video Coding). The proposed method in base on the characteristic of macroblock smoothness follows the statistical analysis of intra prediction mode in an enhancement layer and it decides a candidate intra prediction mode. We also propose an early termination scheme for Intra_BL mode decision where the RD cost value of Intra_BL is utilized. Simulation results show that the proposed method reduces 54.67% of the computation complexity of intra prediction coding, while the degradation in video quality is negligible; for low QP values, the average PSNR loss is very negligible, equivalently the bit rate increases by 0.011%. For high QP values, the average PSNR loss is less than 0.01dB, which equals to 0.249% increase in bitrate.
In the HEVC standard, transform coefficient coding that affects the output bitstream directly is a core part of the encoder and it includes coefficient scanning and entropy coding. Recently, JCT-VC(Joint Collaborative Team on Video Coding) advances to HEVC Committee Draft (CD). In this paper, we explain HEVC transform coefficient coding and propose an efficient transform coefficient coding method considering statistics of transform coefficients in the intra frame coder. The proposed method reduces BD-Rate by up to 0.74%, compared to the conventional HEVC transform coefficient coding.
IEIE Transactions on Smart Processing and Computing
/
v.5
no.5
/
pp.323-326
/
2016
High Efficiency Video Coding (HEVC) adopts intra transform skip mode, in which a residual block is directly quantized in the pixel domain without transforming the block into the frequency domain. Intra transform skip mode provides a significant coding gain for screen content. However, when intra-prediction errors are not transformed, the errors are often correlated along the intra-prediction direction. This paper introduces a residual differential pulse code modulation (DPCM) method for the intra-predicted and transform-skipped blocks to remove redundancy. The proposed method performs pixel-by-pixel residual prediction along the intra-prediction direction to reduce the dynamic range of intra-prediction errors. Experimental results show that the transform skip mode's Bjøntegaard delta rate (BD-rate) is improved by 12.8% for vertically intra-predicted blocks. Overall, the proposed method shows an average 1.2% reduction in BD-rate, relative to HEVC, with negligible computational complexity.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.