• 제목/요약/키워드: Intestinal injury

검색결과 75건 처리시간 0.031초

흰쥐의 급성 십이지장 손상에 대한 반하사심탕의 방어효과에 관한 연구 (A Study on the Defence Effect of Banhasasim-tang for White Rat's Acute Duodenal Injury)

  • 한이수;최준혁;임성우
    • 대한한의학회지
    • /
    • 제23권3호
    • /
    • pp.188-199
    • /
    • 2002
  • Objectives : Banhasasim-tang has been clinically used to treat upper gastric intestinal discomfort. The object of this study is to examine the defense effect of Banhasasim-tang for acute duodenal injury of the mouse. Methods and Materials : Twenty-one rats were divided into 3 groups and treated as follows: the control group was untreated mice. The ADE group was acute duodenal-damage-elicited mice. The BST group was Banhasasim-tang treated mice before acute duodenal damage elicitation. The groups were examined with common morphology, paneth cells in intestinal crypt, absorptive cells and goblet cells in epithelium, cell division in mucose, COX-l as mucosal protector, COX-2 (which appears to play an important role in inflammation), IL-2R-inducing cellular immuno-chainreaction, and the distribution of apoptotic cells. Results : 1. Common morphology: the ADE group was observed with duodenal injury - loss of villi, infiltration of cells concerned to inflammation (lymphocytes, granular leukocytes) to submucosal layer - by hemorrhagic erosions, while the BST group was seen the same as normal in proportion to increasing treatment time before injury. 2. Histochemical change: the ADE group was observed with noticeable decreased distribution of absorptive cells with microvilli, acid mucin secreted goblet cell, neutral mucin secreted goblet cell, paneth cells compared to the normal group. The BST group was seen to have distribution of epithelium cells resembling normal in proportion to increasing treatment time before injury. 3. Imnunohistochemical change: the ADE group showed a change of factors leading to duodenal injury as reduce of cytokinesis, COX-1, increase of COX-2, IL-2R-. In contrast, the BST group tended to reduction of cytokinesis, COX-1, increase of COX-2, IL-2R- in proportion to increasing taking time before injury. 4. Apoptosis change: the ADE group showed increasing apoptosis cells, in contrast to the BST group which was the same as normal in proportion to increasing treatment time before injury. Conclusions : According to the above results, by increasing the defense system of mucosal epithelium, Banhasasim-tang is thought to effectively protect tissue against ulcers resulting from acute duodenal injury.

  • PDF

장의 허혈-재관류로 유도된 급성 폐손상에서 아스피린의 작용 (Effect of Aspirin on the Acute Lung Injury Induced by Intestinal Ischemia/Reperfusion.)

  • 박윤엽
    • 생명과학회지
    • /
    • 제19권6호
    • /
    • pp.818-824
    • /
    • 2009
  • 급성 폐손상시 아스피린이 나타내는 염증 억제작용의 기전을 이해하기 위하여 쥐에서 장 허혈-재관류에 의한 급성 폐손상을 유발하여 phospholipase $A_{2}$ 억제제인 mepacrine과 아스피린의 효과를 비교하였다. 내독소 처치시 A549 세포와 RAW264.7 세포에서 cyc1ooxygenase-2 (COX-2)의 발현이 증가했는데, RAW264.7 세포의 반응이 더 크게 나타났다. 장의 허혈-재관류에 의해 장관 및 폐장조직에서 myeloperoxidase 활성도가 증가하여 염증성 호중구의 침윤이 증가했음을 보여 주었다. 조직 소견상에서도 조직 손상과 염증세포의 침윤이 관찰되었으며, 이는 아스피린 또는 mepacrine 전처치 시 억제 되었다. NADPH oxidase 억제작용이 있는 apocynin과 p38 MAPK 억제제인 SB203580은 A549 세포와 RAW264.7 세포의 LPS에 의한 COX-2 발현을 억제시켰으며 RAW264.7 세포에서 더 크게 억제되었다. 이상의 결과를 통해서 아스피린이 급성 폐손상의 예방목적으로 사용될 수 있다고 보여지며, RAW264.7 세포와 A549 세포에서 COX-2 발현은 다른 특성을 보여서 다른 조절기전이 있을 것으로 생각된다.

Potential Protective Effect of Selenium-Enriched Lactobacillus plantarum on Cadmium-Induced Liver Injury in Mice

  • Yanyan Song;Jing Zhang;Yidan Li;Yuxuan Wang;Yingxin Wan
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권6호
    • /
    • pp.1328-1339
    • /
    • 2024
  • Cadmium (Cd) is a prevalent environmental contaminant that poses a potential hazard to the health of both humans and animals. In this study, biosynthesized selenium-enriched Lactobacillus plantarum and selenium nanoparticles (SeNPs) were developed and evaluated for their protective effects against Cd-induced hepatic injury in mice through oral administration for 4 weeks. Cadmium exposure resulted in severe impairment of liver function, as evidenced by increased levels of serum markers of liver injury and, oxidative stress and significant damage to liver tissue, and a notable decrease in the diversity of the intestinal microbiota. Oral administration of Se-enriched L. plantarum (LS) reduced cadmium accumulation in the liver by 49.5% and, restored other cadmium-induced damage markers to normal levels. A comparison of the effects with those of L. plantarum (L) and SeNPs isolated from LS revealed that LS could more effectively alleviate hepatic oxidative stress and reduce the intrahepatic inflammatory responses of the liver, further protecting against cadmium-induced liver injury. These findings suggest that the development of LS may be effective at protecting the liver and intestinal tract from cadmium-induced damage.

Herbal Medicines Are Activated by Intestinal Microflora

  • Kim, Dong
    • Natural Product Sciences
    • /
    • 제8권2호
    • /
    • pp.35-43
    • /
    • 2002
  • Glycosides of herbal medicines, such as glycyrrhizin, ginsenosides, kalopanaxsaponins, rutin and ponicirin, were studied regarding their metabolic fates and pharmacological actions in relation to intestinal bacteria using germ-free, gnotobiotic and conventional animals. When glycyrrhizin (GL) was orally administered, $18{\beta}-glycyrrhetinic\;acid\;(GA)$, not GL, was detected in plasma and intestinal contents of gnotobiotic and conventional rats. However, GA could not be detected in germ-free rats. When GL was incubated with human intestinal bacteria, it was directly metabolized to GA (>95%) or via $18{\beta}-glycyrrhetinic\;acid-3-{\beta}-D-glucuronide$(>5%). Orally administered GL was effective in gnotobiotic and conventional rats for liver injury induced by carbon tetrachloride, but was not effective in germ-free rats. When ginseng saponins were orally administered to human beings, compound K in the plasma was detected, but the other protopanxadiol saponins were not detected. The compound K was active for tumor metastasis and allergy. When kalopanaxsaponins were incubated with human intestinal microflora, they were metabolized to kalopanaxsaponin A, kalopanaxsaponin I and hederagenin. These metabolites were active for rheumatoid arthritis and diabetic mellitus while the other kalopanxsaponins were not. When flavonoid glycosides were orally administered to animals, aglycones and/or phenolic acids were detected in the urine. The metabolic pathways proceeded by intestinal bacteria rather than by liver or blood enzymes. These metabolites, aglycones and phenolic acids, showed antitumor, antiinflammatory and antiplatelet aggregation activities. These findings suggest that glycosides of herbal medicines are prodrugs.

Protective Effect of Rutin on Splanchnic Injury Following Ischemia and Reperfusion in Rats

  • Lee, Hyang-Mi;Jang, Yoon-Young;Song, Jin-Ho;Kim, Kwang-Joon;Lim, In-Ja;Shin, Yong-Kyoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권4호
    • /
    • pp.323-331
    • /
    • 2001
  • A splanchic artery occlusion for 90 min followed by reperfusion of the mesenteric circulation resulted in a severe form of circulatory shock characterized by endothelial dysfunction, severe hypotension, marked intestinal tissue injury, and a high mortality rate. The effect of rutin, a flavonoid having antiprostanoid, anti-inflammatory, antithrombotic, antioxidant effect, were investigated in a model of splanchnic artery occlusion (SAO) shock in urethane anesthetized rats. Occlusion of the superior mesenteric artery for 90 min produced a severe shock state resulted in a fatal outcome within 120 min of reperfusion in many rats. Rutin was given as a bolus (1.28 mg/kg) 10 min prior to reperfusion. Administration of rutin significantly improved mean arterial blood pressure in comparison to vehicle treated rats (p<0.05). Rutin treatment also resulted in a significant attenuation in the increase in plasma amino nitrogen concentration, intestinal myeloperoxidase activity, intestinal lipid peroxidation, infiltration of neutrophils in intestine and thrombin induced adherence of neutrophils to superior mesentric artery segments. These results suggest that rutin provides beneficial effects in part by preserving endothelial function and attenuating neutrophil accumulation in the ischemic reperfused splanchnic circulation.

  • PDF

Hepatoprotective Effect of Lactic Acid Bacteria, Inhibitors of $\beta$-Glucuronidase Production Against Intestinal Microflora

  • Han Song Yi;Huh Chul Sung;Ahn Young Tae;Lim Kwang Sei;Baek Young Jin;Kim Dong Hyun
    • Archives of Pharmacal Research
    • /
    • 제28권3호
    • /
    • pp.325-329
    • /
    • 2005
  • The hepatoprotective activity of lactic acid bacteria (Lactobacillus brevis HY7401, Lactobacillus acidophilus CSG and Bifidobacterium longum HY8001), which inhibited $\beta$-glucuronidase productivity of intestinal microflora, on t-BHP- or CCl$_4$-induced hepatotoxicity of mice were evaluated. These oral administration of lactic acid bacteria lowered $\beta$-glucuronidase production of intestinal microflora as well as Escherichia coli HGU-3. When lactic acid bacteria at a dose of 0.5 or 2 g (wet weight)/kg was orally administered on CCl$_4$-induced liver injury in mice, these bacteria significantly inhibited the increase of plasma alanine transferase and aspartate transferase activities by $17-57\%$ and $57-66\%$ of the $CCI_4$ control group, respectively. These lactic acid bacteria also showed the potent hepatoprotective effect against t-BHP-induced liver injury in mice. The inhibitory effects of these lactic acid bacteria were more potent than that of dimethyl diphenyl bicarboxylate (DDB), which have been used as a commercial hepatoprotective agent. Among these lactic acid bacteria, L. acidophilus CSG exhibited the most potent hepatoprotective effect. Based on these findings, we insist that an inhibitor of $\beta$-glucuronidase production in intestine, such as lactic acid bacteria, may be hepatoprotective.

Pre-Hospital and In-Hospital Management of an Abdominal Impalement Injury Caused by a Tree Branch

  • Ahn, So Ra;Lee, Joo Hyun;Kim, Keun Young;Park, Chan Yong
    • Journal of Trauma and Injury
    • /
    • 제34권4호
    • /
    • pp.288-293
    • /
    • 2021
  • In South Korea, most patients who visit trauma centers with abdominal injuries have blunt trauma, and penetrating injuries are relatively rare. In extremely rare cases, some patients are admitted with a long object penetrating their abdomen, and these injuries are referred to as abdominal impalement injuries. Most cases of impalement injuries lead to fatal bleeding, and patients often die at the scene of the accident. However, patients who survive until reaching the hospital can have a good prognosis with optimal treatment. A 68-year-old female patient was admitted to the trauma center with a 4-cm-thick tree branch impaling her abdomen. The patient was transported by a medical helicopter and had stable vital signs at admission. The branch sticking out of the abdomen was quite long; thus, we carefully cut the branch with an electric saw to perform computed tomography (CT). CT revealed no signs of major blood vessel injury, but intestinal perforation was observed. During laparotomy, the tree branch was removed after confirming that there were no vascular injuries, and enterostomy was performed because of extensive intestinal injury. After treating other injuries, the patient was discharged without any complications except colostomy. Abdominal impalement injuries are treated using various approaches depending on the injury mechanism and injured region. However, the most important consideration is that the impaled object should not be removed during transportation and resuscitation. Instead, it should only be removed after checking for injuries to blood vessels during laparotomy in an environment where injury control is possible.

Effect of the Inhibition of Phospholipase $A_2$ in Generation of Free Radicals in Intestinal Ischemia/Reperfusion Induced Acute Lung Injury

  • Lee, Young-Man;Park, Yoon-Yub;Kim, Teo-An;Cho, Hyun-G.;Lee, Yoon-Jeong;Repine, John E.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권3호
    • /
    • pp.263-273
    • /
    • 1999
  • The role of phospholipase $A_2\;(PLA_2)$ in acute lung leak induced by intestinal ischemia was investigated in association with neutrophilic respiratory burst. To induce lung leak, we generated intestinal ischemia for 60 min prior to the 120 min reperfusion by clamping superior mesenteric artery in Sprague-Dawley rats. Acute lung leak was confirmed by the increased lung leak index and protein content in bronchoalveolar fluid. These changes were inhibited by mepacrine, the non-specific $PLA_2$ inhibitor. The lung myeloperoxidase (MPO) activity denoting the pulmonary recruitment of neutrophils was increased by intestinal I/R, but decreased by mepacrine. Simultaneously, the number of leukocytes in bronchoalveolar fluid was increased by intestinal ischemia/reperfusion (I/R) and decreased by mepacrine. Gamma glutamyl transferase activity, an index of oxidative stress in the lung, was increased after intestinal I/R but decreased by mepacrine, which implicates that $PLA_2$ increases oxidative stress caused by intestinal I/R. The $PLA_2$ activity was increased after intestinal I/R not only in the intestine but also in the lung. These changes were diminished by mepacrine. In the cytochemical electron microscopy to detect hydrogen peroxide, intestinal I/R increased the generation of the hydrogen peroxide in the lung as well as in the intestine. Expression of interleukin-1 (IL-1) in the lung was investigated through RT-PCR. The expression of IL-1 after intestinal I/R was enhanced, and again, the inhibition of $PLA_2$ suppressed the expression of IL-1 in the lung. Taken together, intestinal I/R seems to induce acute lung leak through the activation of $PLA_2$, the increase of IL-1 expression associated with increased oxidative stress by neutrophilic respiratory burst.

  • PDF

Glutamate attenuates lipopolysaccharide induced intestinal barrier injury by regulating corticotropin-releasing factor pathway in weaned pigs

  • Guo, Junjie;Liang, Tianzeng;Chen, Huifu;Li, Xiangen;Ren, Xiaorui;Wang, Xiuying;Xiao, Kan;Zhao, Jiangchao;Zhu, Huiling;Liu, Yulan
    • Animal Bioscience
    • /
    • 제35권8호
    • /
    • pp.1235-1249
    • /
    • 2022
  • Objective: The purpose of this study was to evaluate the protection of glutamate (GLU) against the impairment in intestinal barrier function induced by lipopolysaccharide (LPS) stress in weaned pigs. Methods: Twenty-four weaned pigs were divided into four treatments containing: i) non-challenged control, ii) LPS-challenged control, iii) LPS+1.0% GLU, and iv) LPS+2.0% GLU. On day 28, pigs were treated with LPS or saline. Blood samples were collected at 0, 2, and 4 h post-injection. After blood samples collection at 4 h, all pigs were slaughtered, and spleen, mesenteric lymph nodes, liver and intestinal samples were obtained. Results: Dietary GLU supplementation inhibited the LPS-induced oxidative stress in pigs, as demonstrated by reduced malondialdehyde level and increased glutathione level in jejunum. Diets supplemented with GLU enhanced villus height, villus height/crypt depth and claudin-1 expression, attenuated intestinal histology and ultrastructure impairment induced by LPS. Moreover, GLU supplementation reversed intestinal intraepithelial lymphocyte number decrease and mast cell number increase induced by LPS stress. GLU reduced serum cortisol concentration at 4 h after LPS stress and downregulated the mRNA expression of intestinal corticotropin-releasing factor signal (corticotrophin-releasing factor [CRF], CRF receptor 1 [CRFR1], glucocorticoid receptor, tryptase, nerve growth factor, tyrosine kinase receptor A), and prevented mast cell activation. GLU upregulated the mRNA expression of intestinal transforming growth factor β. Conclusion: These findings indicate that GLU attenuates LPS-induced intestinal mucosal barrier injury, which is associated with modulating CRF signaling pathway.

Protective effects and mechanism of coenzyme Q10 and vitamin C on doxorubicin-induced gastric mucosal injury and effects of intestinal flora

  • Zhao, Xiaomeng;Feng, Xueke;Ye, Nan;Wei, Panpan;Zhang, Zhanwei;Lu, Wenyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권4호
    • /
    • pp.261-272
    • /
    • 2021
  • Doxorubicin (Dox) is widely used to the treatment of cancer, however, it could cause damage to gastric mucosa. To investigate the protective effects and related mechanisms of coenzyme Q10 (CoQ10) and vitamin C (VC) on Dox-induced gastric mucosal injury, we presented the survey of the 4 groups of the rats with different conditions. The results showed Dox treatment significantly induced GES-1 apoptosis, but preconditioning in GES-1 cells with VC or CoQ10 significantly inhibited the Dox-induced decrease and other harm effects, including the expression and of IκKβ, IκBα, NF-κB/p65 and tumor necrosis factor (TNF-α) in GES-1 cells. Moreover, high-throughput sequencing results showed Dox treatment increased the number of harmful gut microbes, and CoQ10 and VC treatment inhibited this effect. CoQ10 and VC treatment inhibits Dox-induced gastric mucosal injury by inhibiting the activation of the IkKB/IκBα/NF-κB/p65/TNF-α pathway, promoting anti-inflammatory effects of gastric tissue and regulating the composition of the intestinal flora.