• 제목/요약/키워드: Intestinal cells

검색결과 763건 처리시간 0.052초

백출 및 발효백출의 장점막 투과성 개선 효과 및 항염증효과 (Effect of Unfermented and Fermented Atractylodes macrocephalae on Gut Permeability and Lipopolysaccharide-Induced Inflammation)

  • 한경선;김기철;왕경화;김호준
    • 한방비만학회지
    • /
    • 제13권1호
    • /
    • pp.24-32
    • /
    • 2013
  • Objectives: The aim of this study is to investigate anti-imflammatory and protective effect for intestinal epithelial cells with Atractylodes macrocephae (AM), a traditional Korean Herbal medicine and fermented Atractylodes macrocephae (FAM) with Lactobacillus plantarum. Methods: HCT-116 and Raw 264.7 cells were used in this study. Using NO assay, we measured lipopolysaccharide (LPS)-induced anti-inflammatory effect. We measured permeability of intestinal epithelial cells with transepithelial electrical resistance and horseradish peroxide flux assay. Water soluble tetrazolium salt assay was used to see cell proliferation. All the results were presented in mean and standard deviation. We used Student's t-test for analyzing significance of results. Results: In Raw 264.7 cells NO production decreased 22.4% with pre-treatment of AM and FAM, especially with FAM in high concentration. In HCT-116 cells LPS-induced intestinal permeability had a protective effect with both AM and FAM, which was also tend to be proportional to the concentration. Cell viability increased up to 135.52% after treatment of high concentration of FAM in HCT-116, while there was no significant change in Raw 264.7 cells with herb treatments. Conclusions: These results show evidence that AM, especially fermented ones, significantly reduced intestinal membrane permeability. They also had a protective effect as well as an anti-inflammation effect for HCT-116 and Raw 264.7 cells. This suggest that FAM may be a therapeutic agent for Leaky gut syndrome by reducing intestinal permeability.

한국산 고슴도치(Erinaceus koreanus)의 장관 내분비세포에 관한 면역조직화학적 및 전자현미경적 연구 (An Immunohistochemical ana Ultrastructural Studies on the Gut Endocrine Cells in the Hedgehog, Erinaceus koreanus)

  • 이재현
    • Applied Microscopy
    • /
    • 제18권2호
    • /
    • pp.59-76
    • /
    • 1988
  • In order to know the distribution, relative frequencies, types and morphology, endocrine cells in the intestinal tract of the hedgehog(Erinaceus koreanus) were studied by light microscopy, immunohistochemistry and electron microscopy. The results obtained are summarized as follows: 1. Two kinds of endocrine cells were demonstrated with two specific staining methods. Argyrophil cells(reactive cells for Grimelius method) were found most frequently in the intestinal region, and were infrequent in the rectum, whereas argentaffin cells (reactive cells for Masson-Hamperl method) were found most frequently in the rectum and in the other legions were infrequent. These reacting cells were mainly found in the intestinal glands, whereas a small number in the mucosa. 2. Twelve kinds of endocrine cells, gastrin(Gas)-, somatostatin (Som)-, serotonin(5-HT)-, glucagon(Glu)-, bovine pancreatic polypeptide(Bpp)-, cholecystokinin(Cck)-, secretin(Sec)-, motilin(Mot)-, glicentin(Gli)-, gastric inhibitor polypeptide(GIp)-, substance P(Sp)-, and neurotensin(Neu)-immunoreactive cells, were identified by immunohistochemical method. Gas-, Som-, 5-HT-, Glu-, Cck-, Sec-, Mot-, Gli-, Sp-, and Neu-reactive cells were observed in the duodenum, and among these Gas- and 5-HT-reactive cells were moderately found while the others were infrequent. In the jejunoileum Gas-, Som-, 5-HT-, Glu-, Cck-, Mot-, Gli-, GIp-, SP-, and Neu-reactive cells were found, and among these 5-HT- and GIp-reactive cells were moderately found while the others were infrequent. In the colon Sec-reactive cell was not detected. 5-HT-reactive cells were found most frequently and the others were infrequent in this region. 5-HT-, Bpp-, GIi- and Neu-reactive cells were found in the rectum. Among these 5-HT-reactive cells were found most frequently. 3. Electron microscopically, five types of endocrine cells, EC, ECL, D, G, A-like cell, were identified in the intestinal region. EC and ECL cells in the duodenum, EC, D and G cells in the jejuno-ileum, EC and A-like cells in the colon and EC cell in the rectum were observed respectively.

  • PDF

장줄기세포 조절 연구를 위한 초파리 장세포의 일차배양 (Primary Cultures of Drosophila melanogaster Gut Cells for Studies of Intestinal Stem Cell Regulation)

  • 윤영일;황재삼;구태원;한명세;안미영;윤은영
    • 생명과학회지
    • /
    • 제22권5호
    • /
    • pp.621-626
    • /
    • 2012
  • 초파리는 발생과 질병연구를 위한 모델 곤충으로 널리 이용되어 왔다. 본 연구에서도 초파리를 모델곤충으로 한 장질환 연구의 일환으로 다양한 병원균 감염 및 장질환 유발시 어떻게 장줄기세포가 작용하는지를 이해하기 위해 초파리 장세포의 일차배양 방법을 확립하였다. 초파리 성충으로부터 장을 해부하고 다양한 효소를 처리하여 장세포를 분리한 후 배양하였다. 배양세포의 생존여부는 현미경 검경 및 MTS assay에 의해 확인한 결과 배양 후 9일째 최대 증식되었고 14일까지 생존함을 확인할 수 있었다. 또한 장줄기세포 및 장내분비세포의 존재도 immunostaining에 의해 확인하였다. 따라서 본 연구에서 구축된 초파리 일차배양 장세포는 다양한 유전자에 의한 장줄기 세포 조절연구뿐만 아니라 장에서 발생하는 다양한 질병을 연구하는 도구로 매우 유용할 것으로 추측된다.

장내 상피세포 점막 투과성에 대한 유산균 및 금은화의 효과 (In Vitro Profiling of Bacterial Influence and Herbal Applications of Lonicerae Flos on the Permeability of Intestinal Epithelial Cells)

  • 이신지;이명종;정지은;김호준
    • 한국식품영양과학회지
    • /
    • 제41권7호
    • /
    • pp.881-887
    • /
    • 2012
  • 유산균과 금은화, 발효 금은화는 장누수 증후군과 연관된 장 상피세포 점막 투과성 감소에 대하여 유의한 효과를 나타내었다. 따라서 유산균을 단독으로 사용하는 방법과 유산균을 이용해 발효시킨 금은화를 증가된 장 투과성 및 장내미생물 불균형으로 인한 장누수 증후군과 관련된 일련의 증상들을 치료하고 면역관련 질환 및 만성 염증성 질환에도 응용할 수 있을 것으로 예상되며 이에 대한 앞으로의 추가 연구가 필요할 것으로 사료된다.

Indole-3-Carbinol Promotes Goblet-Cell Differentiation Regulating Wnt and Notch Signaling Pathways AhR-Dependently

  • Park, Joo-Hung;Lee, Jeong-Min;Lee, Eun-Jin;Hwang, Won-Bhin;Kim, Da-Jeong
    • Molecules and Cells
    • /
    • 제41권4호
    • /
    • pp.290-300
    • /
    • 2018
  • Using an in vitro model of intestinal organoids derived from intestinal crypts, we examined effects of indole-3-carbinol (I3C), a phytochemical that has anticancer and aryl hydrocarbon receptor (AhR)-activating abilities and thus is sold as a dietary supplement, on the development of intestinal organoids and investigated the underlying mechanisms. I3C inhibited the in vitro development of mouse intestinal organoids. Addition of ${\alpha}$-naphthoflavone, an AhR antagonist or AhR siRNA transfection, suppressed I3C function, suggesting that I3C-mediated interference with organoid development is AhR-dependent. I3C increased the expression of Muc2 and lysozyme, lineage-specific genes for goblet cells and Paneth cells, respectively, but inhibits the expression of IAP, a marker gene for enterocytes. In the intestines of mice treated with I3C, the number of goblet cells was reduced, but the number of Paneth cells and the depth and length of crypts and villi were not changed. I3C increased the level of active nonphosphorylated ${\beta}$-catenin, but suppressed the Notch signal. As a result, expression of Hes1, a Notch target gene and a transcriptional repressor that plays a key role in enterocyte differentiation, was reduced, whereas expression of Math1, involved in the differentiation of secretory lineages, was increased. These results provide direct evidence for the role of AhR in the regulation of the development of intestinal stem cells and indicate that such regulation is likely mediated by regulation of Wnt and Notch signals.

Curcumin utilizes the anti-inflammatory response pathway to protect the intestine against bacterial invasion

  • Cho, Jin Ah;Park, Eunmi
    • Nutrition Research and Practice
    • /
    • 제9권2호
    • /
    • pp.117-122
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Curcumin, a major component of the Curcuma species, contains antioxidant and anti-inflammatory properties. Although it was found to induce apoptosis in cancer cells, the functional role of curcumin as well as its molecular mechanism in anti-inflammatory response, particularly in intestinal cells, has been less investigated. The intestine epithelial barrier is the first barrier and the most important location for the substrate coming from the lumen of the gut. SUBJECTS/METHODS: We administered curcumin treatment in the human intestinal epithelial cell lines, T84 and Caco-2. We examined endoplasmic reticulum (ER) stress response by thapsigargin, qPCR of XBP1 and BiP, electrophysiology by wild-type cholera toxin in the cells. RESULTS: In this study, we showed that curcumin treatment reduces ER stress and thereby decreases inflammatory response in human intestinal epithelial cells. In addition, curcumin confers protection without damaging the membrane tight junction or actin skeleton change in intestine epithelial cells. Therefore, curcumin treatment protects the gut from bacterial invasion via reduction of ER stress and anti-inflammatory response in intestinal epithelial cells. CONCLUSIONS: Taken together, our data demonstrate the important role of curcumin in protecting the intestine by modulating ER stress and inflammatory response post intoxication.

魚類消化管의 Alkaline Phosphatase 活性에 관한 硏究 (A Study on the Alkaline Phosphatase Activity in the Digestive Tracts of Fishes)

  • 하재청;김국찬
    • 한국동물학회지
    • /
    • 제17권4호
    • /
    • pp.167-176
    • /
    • 1974
  • 著者들은 3種의 어류를 재료로 하여, 咽頭, 食道, 胃, 前場部 및 後場部 alkaline phosphatase의 分布상태를 비교관찰하여 다음과 같은 결과를 얻었다. 1. 미꾸리, 가물치의 咽頭上皮 細胞層에서 중등도의 alkaline phosphatase 양성반응을, 미꾸리와 뱀장어의 食道上皮의 基底細胞層에 증등도의 양성반응을 보였다. 2. 上記 全 魚類의 咽頭, 食道, 腸管膨大部 및 腸粘膜의 杯狀細胞와 胃腺細胞에서는 alkaline phosphatase 활성은 관찰할 수 없었다. 3. 腸管膨大部 및 腸上皮 유리연에 강한 alkaline phosphatase 양성반응을 관찰할 수 있었으나, 미꾸리의 後場部의 上皮유리연에서는 미약한 반응을 보였다.

  • PDF

Contributions of HO-1-Dependent MAPK to Regulating Intestinal Barrier Disruption

  • Zhang, Zhenling;Zhang, Qiuping;Li, Fang;Xin, Yi;Duan, Zhijun
    • Biomolecules & Therapeutics
    • /
    • 제29권2호
    • /
    • pp.175-183
    • /
    • 2021
  • The mitogen-activated protein kinase (MAPK) pathway controls intestinal epithelial barrier permeability by regulating tight junctions (TJs) and epithelial cells damage. Heme oxygenase-1 (HO-1) and carbon monoxide (CO) protect the intestinal epithelial barrier function, but the molecular mechanism is not yet clarified. MAPK activation and barrier permeability were studied using monolayers of Caco-2 cells treated with tissue necrosis factor α (TNF-α) transfected with FUGW-HO-1 or pLKO.1-sh-HO-1 plasmid. Intestinal mucosal barrier permeability and MAPK activation were also investigated using carbon tetrachloride (CCl4) administration with CoPP (a HO-1 inducer), ZnPP (a HO-1 inhibitor), CO releasing molecule 2 (CORM-2), or inactived-CORM-2-treated wild-type mice and mice with HO-1 deficiency in intestinal epithelial cells. TNF-α increased epithelial TJ disruption and cleaved caspase-3 expression, induced ERK, p38, and JNK phosphorylation. In addition, HO-1 blocked TNF-α-induced increase in epithelial TJs disruption, cleaved caspase-3 expression, as well as ERK, p38, and JNK phosphorylation in an HO-1-dependent manner. CoPP and CORM-2 directly ameliorated intestinal mucosal injury, attenuated TJ disruption and cleaved caspase-3 expression, and inhibited epithelial ERK, p38, and JNK phosphorylation after chronic CCl4 injection. Conversely, ZnPP completely reversed these effects. Furthermore, mice with intestinal epithelial HO-1 deficient exhibited a robust increase in mucosal TJs disruption, cleaved caspase-3 expression, and MAPKs activation as compared to the control group mice. These data demonstrated that HO-1-dependent MAPK signaling inhibition preserves the intestinal mucosal barrier integrity by abrogating TJ dysregulation and epithelial cell damage. The differential targeting of gut HO-1-MAPK axis leads to improved intestinal disease therapy.

Regulation of Intestinal Homeostasis by Innate Immune Cells

  • Kayama, Hisako;Nishimura, Junichi;Takeda, Kiyoshi
    • IMMUNE NETWORK
    • /
    • 제13권6호
    • /
    • pp.227-234
    • /
    • 2013
  • The intestinal immune system has an ability to distinguish between the microbiota and pathogenic bacteria, and then activate pro-inflammatory pathways against pathogens for host defense while remaining unresponsive to the microbiota and dietary antigens. In the intestine, abnormal activation of innate immunity causes development of several inflammatory disorders such as inflammatory bowel diseases (IBD). Thus, activity of innate immunity is finely regulated in the intestine. To date, multiple innate immune cells have been shown to maintain gut homeostasis by preventing inadequate adaptive immune responses in the murine intestine. Additionally, several innate immune subsets, which promote Th1 and Th17 responses and are implicated in the pathogenesis of IBD, have recently been identified in the human intestinal mucosa. The demonstration of both murine and human intestinal innate immune subsets contributing to regulation of adaptive immunity emphasizes the conserved innate immune functions across species and might promote development of the intestinal innate immunity-based clinical therapy.

Establishment of intestinal organoids from small intestine of growing cattle (12 months old)

  • Kang Won, Park;Hyeon, Yang;Min Gook, Lee;Sun A, Ock;Hayeon, Wi;Poongyeon, Lee;In-Sul, Hwang;Jae Gyu, Yoo;Choon-Keun, Park;Bo Ram, Lee
    • Journal of Animal Science and Technology
    • /
    • 제64권6호
    • /
    • pp.1105-1116
    • /
    • 2022
  • Recently, we reported the robust in vitro three-dimensional (3D) expansion of intestinal organoids derived from adult bovine (> 24 months) samples. The present study aimed to establish an in vitro 3D system for the cultivation of intestinal organoids derived from growing cattle (12 months old) for practical use as a potential alternative to in vivo systems for various purposes. However, very few studies on the functional characterization and 3D expansion of adult stem cells from livestock species compared to those from other species are available. In this study, intestinal crypts, including intestinal stem cells, from the small intestines (ileum and jejunum) of growing cattle were isolated and long-term 3D cultures were successfully established using a scaffold-based method. Furthermore, we generated an apical-out intestinal organoid derived from growing cattle. Interestingly, intestinal organoids derived from the ileum, but not the jejunum, could be expanded without losing the ability to recapitulate crypts, and these organoids specifically expressed several specific markers of intestinal stem cells and the intestinal epithelium. Furthermore, these organoids exhibited key functionality with regard to high permeability for compounds up to 4 kDa in size (e.g., fluorescein isothiocyanate [FITC]-dextran), indicating that apical-out intestinal organoids are better than other models. Collectively, these results indicate the establishment of growing cattle-derived intestinal organoids and subsequent generation of apical-out intestinal organoids. These organoids may be valuable tools and potential alternatives to in vivo systems for examining host-pathogen interactions involving epithelial cells, such as enteric virus infection and nutrient absorption, and may be used for various purposes.