DOI QR코드

DOI QR Code

Regulation of Intestinal Homeostasis by Innate Immune Cells

  • Kayama, Hisako (Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University) ;
  • Nishimura, Junichi (Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University) ;
  • Takeda, Kiyoshi (Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University)
  • Received : 2013.12.02
  • Accepted : 2013.12.13
  • Published : 2013.12.31

Abstract

The intestinal immune system has an ability to distinguish between the microbiota and pathogenic bacteria, and then activate pro-inflammatory pathways against pathogens for host defense while remaining unresponsive to the microbiota and dietary antigens. In the intestine, abnormal activation of innate immunity causes development of several inflammatory disorders such as inflammatory bowel diseases (IBD). Thus, activity of innate immunity is finely regulated in the intestine. To date, multiple innate immune cells have been shown to maintain gut homeostasis by preventing inadequate adaptive immune responses in the murine intestine. Additionally, several innate immune subsets, which promote Th1 and Th17 responses and are implicated in the pathogenesis of IBD, have recently been identified in the human intestinal mucosa. The demonstration of both murine and human intestinal innate immune subsets contributing to regulation of adaptive immunity emphasizes the conserved innate immune functions across species and might promote development of the intestinal innate immunity-based clinical therapy.

Keywords

References

  1. Maloy, K. J. and M. C. Kullberg. 2008. IL-23 and Th17 cytokines in intestinal homeostasis. Mucosal Immunol. 1: 339-349. https://doi.org/10.1038/mi.2008.28
  2. Shevach, E. M. 2009. Mechanisms of $Foxp3^+$ T regulatory cell-mediated suppression. Immunity 30: 636-645.
  3. Sakaguchi, S. 2003. The origin of Foxp3-expressing $CD4^+$ regulatory T cells: thymus or periphery. J. Clin. Invest. 112: 1310-1312. https://doi.org/10.1172/JCI200320274
  4. Asseman, C., S. Mauze, M. W. Leach, R. L. Coffman, and F. Powrie. 1999. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J. Exp. Med. 190: 995-1004. https://doi.org/10.1084/jem.190.7.995
  5. Garrett, W. S., J. I. Gordon, and L. H. Glimcher. 2010. Homeostasis and inflammation in the intestine. Cell 140: 859-870. https://doi.org/10.1016/j.cell.2010.01.023
  6. Renz, H., P. Brandtzaeg, and M. Hornef. 2011. The impact of perinatal immune development on mucosal homeostasis and chronic inflammation. Nat. Rev. Immunol. 12: 9-23. https://doi.org/10.1038/nrm3028
  7. Maloy, K. J. and F. Powrie. 2011. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 474: 298-306. https://doi.org/10.1038/nature10208
  8. Franke, A., D. P. McGovern, J. C. Barrett, K. Wang, G. L. Radford-Smith, T. Ahmad, C. W. Lees, T. Balschun, J. Lee, R. Roberts, C. A. Anderson, J. C. Bis, S. Bumpstead, D. Ellinghaus, E. M. Festen, M. Georges, T. Green, T. Haritunians, L. Jostins, A. Latiano, C. G. Mathew, G. W. Montgomery, N. J. Prescott, S. Raychaudhuri, J. I. Rotter, P. Schumm, Y. Sharma, L. A. Simms, K. D. Taylor, D. Whiteman, C. Wijmenga, R. N. Baldassano, M. Barclay, T. M. Bayless, S. Brand, C. Buning, A. Cohen, J. F. Colombel, M. Cottone, L. Stronati, T. Denson, M. De Vos, R. D'Inca, M. Dubinsky, C. Edwards, T. Florin, D. Franchimont, R. Gearry, J. Glas, A. Van Gossum, S. L. Guthery, J. Halfvarson, H. W. Verspaget, J. P. Hugot, A. Karban, D. Laukens, I. Lawrance, M. Lemann, A. Levine, C. Libioulle, E. Louis, C. Mowat, W. Newman, J. Panes, A. Phillips, D. D. Proctor, M. Regueiro, R. Russell, P. Rutgeerts, J. Sanderson, M. Sans, F. Seibold, A. H. Steinhart, P. C. Stokkers, L. Torkvist, G. Kullak-Ublick, D. Wilson, T. Walters, S. R. Targan, S. R. Brant, J. D. Rioux, M. D'Amato, R. K. Weersma, S. Kugathasan, A. M. Griffiths, J. C. Mansfield, S. Vermeire, R. H. Duerr, M. S. Silverberg, J. Satsangi, S. Schreiber, J. H. Cho, V. Annese, H. Hakonarson, M. J. Daly, and M. Parkes. 2010. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat. Genet. 42: 1118-1125. https://doi.org/10.1038/ng.717
  9. Anderson C. A., G. Boucher, C. W. Lees, A. Franke, M. D'Amato, K. D. Taylor, J. C. Lee, P. Goyette, M. Imielinski, A. Latiano, C. Lagace, R. Scott, L. Amininejad, S. Bumpstead, L. Baidoo, R. N. Baldassano, M. Barclay, T. M. Bayless, S. Brand, C. Buning, J. F. Colombel, L. A. Denson, M. De Vos, M. Dubinsky, C. Edwards, D. Ellinghaus, R. S. Fehrmann, J. A. Floyd, T. Florin, D. Franchimont, L. Franke, M. Georges, J. Glas, N. L. Glazer, S. L. Guthery, T. Haritunians, N. K. Hayward, J. P. Hugot, G. Jobin, D. Laukens, I. Lawrance, M. Lemann, A. Levine, C. Libioulle, E. Louis, D. P. McGovern, M. Milla, G. W. Montgomery, K. I. Morley, C. Mowat, A. Ng, W. Newman, R. A. Ophoff, L. Papi, O. Palmieri, L. Peyrin-Biroulet, J. Panes, A. Phillips, N. J. Prescott, D. D. Proctor, R. Roberts, R. Russell, P. Rutgeerts, J. Sanderson, M. Sans, P. Schumm, F. Seibold, Y. Sharma, L. A. Simms, M. Seielstad, A. H. Steinhart, S. R. Targan, L. H. van den Berg, M. Vatn, H. Verspaget, T. Walters, C. Wijmenga, D. C. Wilson, H. J. Westra, R. J. Xavier, Z. Z. Zhao, C. Y. Ponsioen, V. Andersen, L. Torkvist, M. Gazouli, N. P. Anagnou, T. H. Karlsen, L. Kupcinskas, J. Sventoraityte, J. C. Mansfield, S. Kugathasan, M. S. Silverberg, J. Halfvarson, J. I. Rotter, C. G. Mathew, A. M. Griffiths, R. Gearry, T. Ahmad, S. R. Brant, M. Chamaillard, J. Satsangi, J. H. Cho, S. Schreiber, M. J. Daly, J. C. Barrett, M. Parkes, V. Annese, H. Hakonarson, G. Radford-Smith, R. H. Duerr, S. Vermeire, R. K. Weersma, and J. D. Rioux. 2011. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat. Genet. 43: 246-252. https://doi.org/10.1038/ng.764
  10. Strober, W. 2009. The multifaceted influence of the mucosal microflora on mucosal dendritic cell responses. Immunity 31: 377-388. https://doi.org/10.1016/j.immuni.2009.09.001
  11. Varol, C., E. Zigmond, and S. Jung. 2010. Securing the immune tightrope: mononuclear phagocytes in the intestinal lamina propria. Nat. Rev. Immunol. 10: 415-426. https://doi.org/10.1038/nri2778
  12. Coombes, J. L. and F. Powrie. 2008. Dendritic cells in intestinal immune regulation. Nat. Rev. Immunol. 8: 435-446. https://doi.org/10.1038/nri2335
  13. Laffont, S. and F. Powrie. 2009. Immunology: Dendritic-cell genealogy. Nature 462: 732-733. https://doi.org/10.1038/462732a
  14. Varol, C., A. Vallon-Eberhard, E. Elinav, T. Aychek, Y. Shapira, H. Luche, H. J. Fehling, W. D. Hardt, G. Shakhar, and S. Jung. 2009. Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity 31: 502-512. https://doi.org/10.1016/j.immuni.2009.06.025
  15. Niess, J. H. and G. Adler. 2010. Enteric flora expands gut lamina propria $CX_3CR1^+$ dendritic cells supporting inflammatory immune responses under normal and inflammatory conditions. J. Immunol. 184: 2026-2037. https://doi.org/10.4049/jimmunol.0901936
  16. Bogunovic, M., F. Ginhoux, J. Helft, L. Shang, D. Hashimoto, M. Greter, K. Liu, C. Jakubzick, M. A. Ingersoll, M. Leboeuf, E. R. Stanley, M. Nussenzweig, S. A. Lira, G. J. Randolph, and M. Merad. 2009. Origin of the lamina propria dendritic cell network. Immunity 31: 513-525. https://doi.org/10.1016/j.immuni.2009.08.010
  17. Fujimoto, K., T. Karuppuchamy, N. Takemura, M. Shimohigoshi, T. Machida, Y. Haseda, T. Aoshi, K. J. Ishii, S. Akira, and S. Uematsu. 2011. A new subset of $CD103^+CD8alpha^+$ dendritic cells in the small intestine expresses TLR3, TLR7, and TLR9 and induces Th1 response and CTL activity. J. Immunol. 186: 6287-6295. https://doi.org/10.4049/jimmunol.1004036
  18. Jaensson, E., H. Uronen-Hansson, O. Pabst, B. Eksteen, J. Tian, J. L. Coombes, P. L. Berg, T. Davidsson, F. Powrie, B. Johansson-Lindbom, and W. W. Agace. 2008. Small intestinal $CD103^+$ dendritic cells display unique functional properties that are conserved between mice and humans. J. Exp. Med. 205: 2139-2149. https://doi.org/10.1084/jem.20080414
  19. Schulz, O., E. Jaensson, E. K. Persson, X. Liu, T. Worbs, W. W. Agace, and O. Pabst. 2009. Intestinal $CD103^+$, but not $CX_3CR1^+$, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J. Exp. Med. 206: 3101-3114. https://doi.org/10.1084/jem.20091925
  20. Persson, E. K., H. Uronen-Hansson, M. Semmrich, A. Rivollier, K. Hagerbrand, J. Marsal, S. Gudjonsson, U. Hakansson, B. Reizis, K. Kotarsky, and W. W. Agace. 2013. IRF4 transcription-factor-dependent CD103(+)CD11b(+) dendritic cells drive mucosal T helper 17 cell differentiation. Immunity 38: 958-969. https://doi.org/10.1016/j.immuni.2013.03.009
  21. Schlitzer, A., N. McGovern, P. Teo, T. Zelante, K. Atarashi, D. Low, A. W. Ho, P. See, A. Shin, P. S. Wasan, G. Hoeffel, B. Malleret, A. Heiseke, S. Chew, L. Jardine, H. A. Purvis, C. M. Hilkens, J. Tam, M. Poidinger, E. R. Stanley, A. B. Krug, L. Renia, B. Sivasankar, L. G. Ng, M. Collin, P. Ricciardi-Castagnoli, K. Honda, M. Haniffa, and F. Ginhoux. 2013. IRF4 transcription factor-dependent $CD11b^+$ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity 38: 970-983. https://doi.org/10.1016/j.immuni.2013.04.011
  22. Uematsu, S., K. Fujimoto, M. H. Jang, B. G. Yang, Y. J. Jung, M. Nishiyama, S. Sato, T. Tsujimura, M. Yamamoto, Y. Yokota, H. Kiyono, M. Miyasaka, K. J. Ishii, and S. Akira. 2008. Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nat. Immunol. 9: 769-776. https://doi.org/10.1038/ni.1622
  23. Kinnebrew, M. A., C. G. Buffie, G. E. Diehl, L. A. Zenewicz, I. Leiner, T. M. Hohl, R. A. Flavell, D. R. Littman, and E. G. Pamer. 2012. Interleukin 23 production by intestinal CD103(+)CD11b(+) dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense. Immunity 36: 276-287. https://doi.org/10.1016/j.immuni.2011.12.011
  24. Johansson-Lindbom, B., M. Svensson, O. Pabst, C. Palmqvist, G. Marquez, R. Forster, and W. W. Agace. 2005. Functional specialization of gut $CD103^+$ dendritic cells in the regulation of tissue-selective T cell homing. J. Exp. Med. 202: 1063-1073. https://doi.org/10.1084/jem.20051100
  25. Sun, C. M., J. A. Hall, R. B. Blank, N. Bouladoux, M. Oukka, J. R. Mora, and Y. Belkaid. 2007. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204: 1775-1785. https://doi.org/10.1084/jem.20070602
  26. Jeon, S. G., H. Kayama, Y. Ueda, T. Takahashi, T. Asahara, H. Tsuji, N. M. Tsuji, H. Kiyono, J. S. Ma, T. Kusu, R. Okumura, H. Hara, H. Yoshida, M. Yamamoto, K. Nomoto, and K. Takeda. 2012. Probiotic Bifidobacterium breve induces IL-10-producing Tr1 cells in the colon. PLoS Pathog. 8: e1002714. https://doi.org/10.1371/journal.ppat.1002714
  27. Niess, J. H., S. Brand, X. Gu, L. Landsman, S. Jung, B. A. McCormick, J. M. Vyas, M. Boes, H. L. Ploegh, J. G. Fox, D. R. Littman, and H. C. Reinecker. 2005. $CX_3CR1$-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307: 254-258. https://doi.org/10.1126/science.1102901
  28. Atarashi, K., J. Nishimura, T. Shima, Y. Umesaki, M. Yamamoto, M. Onoue, H. Yagita, N. Ishii, R. Evans, K. Honda, and K. Takeda. 2008. ATP drives lamina propria T(H)17 cell differentiation. Nature 455: 808-812. https://doi.org/10.1038/nature07240
  29. Denning, T. L., Y. C. Wang, S. R. Patel, I. R. Williams, and B. Pulendran. 2007. Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat. Immunol. 8: 1086-1094. https://doi.org/10.1038/ni1511
  30. Hadis, U., B. Wahl, O. Schulz, M. Hardtke-Wolenski, A. Schippers, N. Wagner, W. Muller, T. Sparwasser, R. Forster, and O. Pabst. 2011. Intestinal tolerance requires gut homing and expansion of $Foxp3^+$ regulatory T cells in the lamina propria. Immunity 34: 237-246. https://doi.org/10.1016/j.immuni.2011.01.016
  31. Medina-Contreras, O., D. Geem, O. Laur, I. R. Williams, S. A. Lira, A. Nusrat, C. A. Parkos, and T. L. Denning. 2011. $CX_3CR1$ regulates intestinal macrophage homeostasis, bacterial translocation, and colitogenic Th17 responses in mice. J. Clin. Invest. 121: 4787-4795. https://doi.org/10.1172/JCI59150
  32. Chang, S. Y., J. H. Song, B. Guleng, C. A. Cotoner, S. Arihiro, Y. Zhao, H. S. Chiang, M. O'Keeffe, G. Liao, C. L. Karp, M. N. Kweon, A. H. Sharpe, A. Bhan, C. Terhorst, and H. C. Reinecker. 2013. Circulatory antigen processing by mucosal dendritic cells controls CD8(+) T cell activation. Immunity 38: 153-165. https://doi.org/10.1016/j.immuni.2012.09.018
  33. Kayama, H., Y. Ueda, Y. Sawa, S. G. Jeon, J. S. Ma, R. Okumura, A. Kubo, M. Ishii, T. Okazaki, M. Murakami, M. Yamamoto, H. Yagita, and K. Takeda. 2012. Intestinal CX3C chemokine receptor 1(high) ($CX_3CR1$(high)) myeloid cells prevent T-cell-dependent colitis. Proc. Natl. Acad. Sci. U. S. A. 109: 5010-5015. https://doi.org/10.1073/pnas.1114931109
  34. Ueda, Y., H. Kayama, S. G. Jeon, T. Kusu, Y. Isaka, H. Rakugi, M. Yamamoto, and K. Takeda. 2010. Commensal microbiota induce LPS hyporesponsiveness in colonic macrophages via the production of IL-10. Int. Immunol. 22: 953-962. https://doi.org/10.1093/intimm/dxq449
  35. Takeda, K., B. E. Clausen, T. Kaisho, T. Tsujimura, N. Terada, I. Forster, and S. Akira. 1999. Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 10: 39-49. https://doi.org/10.1016/S1074-7613(00)80005-9
  36. Kuhn, R., J. Lohler, D. Rennick, K. Rajewsky, and W. Muller. 1993. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75: 263-274. https://doi.org/10.1016/0092-8674(93)80068-P
  37. Murai, M., O. Turovskaya, G. Kim, R. Madan, C. L. Karp, H. Cheroutre, and M. Kronenberg. 2009. Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nat. Immunol. 10: 1178-1184. https://doi.org/10.1038/ni.1791
  38. Kamada, N., T. Hisamatsu, S. Okamoto, H. Chinen, T. Kobayashi, T. Sato, A. Sakuraba, M. T. Kitazume, A. Sugita, K. Koganei, K. S. Akagawa, and T. Hibi. 2008. Unique CD14 intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-gamma axis. J. Clin. Invest. 118: 2269-2280.
  39. Ahern, P. P., C. Schiering, S. Buonocore, M. J. McGeachy, D. J. Cua, K. J. Maloy, and F. Powrie. 2010. Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity 33: 279-288. https://doi.org/10.1016/j.immuni.2010.08.010
  40. Kamada, N., T. Hisamatsu, H. Honda, T. Kobayashi, H. Chinen, M. T. Kitazume, T. Takayama, S. Okamoto, K. Koganei, A. Sugita, T. Kanai, and T. Hibi. 2009. Human $CD14^+$ macrophages in intestinal lamina propria exhibit potent antigen-presenting ability. J. Immunol. 183: 1724-1731. https://doi.org/10.4049/jimmunol.0804369
  41. Lee, Y. K., H. Turner, C. L. Maynard, J. R. Oliver, D. Chen, C. O. Elson, and C. T. Weaver. 2009. Late developmental plasticity in the T helper 17 lineage. Immunity 30: 92-107.
  42. Ogino, T., J. Nishimura, S. Barman, H. Kayama, S. Uematsu, D. Okuzaki, H. Osawa, N. Haraguchi, M. Uemura, T. Hata, I. Takemasa, T. Mizushima, H. Yamamoto, K. Takeda, Y. Doki, and M. Mori. 2013. Increased Th17-Inducing Activity of $CD14^+$ CD163low Myeloid Cells in Intestinal Lamina Propria of Patients with Crohn's Disease. Gastroenterology 145: 1380-1391. https://doi.org/10.1053/j.gastro.2013.08.049
  43. Uhlig, H. H., J. Coombes, C. Mottet, A. Izcue, C. Thompson, A. Fanger, A. Tannapfel, J. D. Fontenot, F. Ramsdell, and F. Powrie. 2006. Characterization of $Foxp3^+CD4^+CD25^+$ and IL-10-secreting $CD4^+CD25^+$ T cells during cure of colitis. J. Immunol. 177: 5852-5860. https://doi.org/10.4049/jimmunol.177.9.5852

Cited by

  1. Functional Roles of Syk in Macrophage-Mediated Inflammatory Responses vol.2014, pp.None, 2013, https://doi.org/10.1155/2014/270302
  2. Functional Role of Milk Fat Globule-Epidermal Growth Factor VIII in Macrophage-Mediated Inflammatory Responses and Inflammatory/Autoimmune Diseases vol.2016, pp.None, 2016, https://doi.org/10.1155/2016/5628486
  3. NOD2 up-regulates TLR2-mediated IL-23p19 expression via NF-κB subunit c-Rel in Paneth cell-like cells vol.7, pp.39, 2013, https://doi.org/10.18632/oncotarget.11467
  4. Multiple targets of carbon monoxide gas in the intestinal inflammation vol.595, pp.None, 2013, https://doi.org/10.1016/j.abb.2015.06.020
  5. Inter-individual variability and genetic influences on cytokine responses to bacteria and fungi vol.22, pp.8, 2013, https://doi.org/10.1038/nm.4139
  6. Tabetri™ ( Tabebuia avellanedae Ethanol Extract) Ameliorates Osteoarthritis Symptoms Induced by Monoiodoacetate through Its Anti-Inflammatory and Chondroprotective Activities vol.2017, pp.None, 2013, https://doi.org/10.1155/2017/3619879