• Title/Summary/Keyword: Intestinal Structure

Search Result 100, Processing Time 0.021 seconds

Intestinal Structure and Function of Broiler Chickens on Wheat-Based Diets Supplemented With a Microbial Enzyme

  • Iji, P.A.;Hughes, R.J.;Choct, M.;Tivey, D.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.1
    • /
    • pp.54-60
    • /
    • 2001
  • A study was conducted to assess the nutritive value of two diets based on a low-energy variety of wheat, RAC C1 and their effects on intestinal mucosal structure and function in broiler chickens. The diets were fed with or without microbial enzyme supplement to male and female broiler chickens. The digesta viscosity was reduced (p<0.001) through supplementation with a microbial enzyme in male and female chicks. Enzyme supplementation also improved the dietary apparent metabolizable energy content (p<0.001) and had slight but non-significant positive effects on chick growth and feed conversion ratio. Intestinal mucosal structure and enzyme function were not affected by microbial enzyme supplement. Male chicks consumed more feeds (p<0.001), attained higher final body weight (p<0.001) and were more efficient at feed utilization (p<0.01) than the female chicks. Except for duodenal villus surface area and ileal protein content, intestinal mucosal structure and enzyme activities were similar between the two sexes and dietary treatment groups. The study showed an improvement in the nutritive value of the diets in the presence of the microbial enzyme supplement.

Curcumin protects against the intestinal ischemia-reperfusion injury: involvement of the tight junction protein ZO-1 and TNF-α related mechanism

  • Tian, Shuying;Guo, Ruixue;Wei, Sichen;Kong, Yu;Wei, Xinliang;Wang, Weiwei;Shi, Xiaomeng;Jiang, Hongyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.2
    • /
    • pp.147-152
    • /
    • 2016
  • Present study aimed to investigate the effect of curcumin-pretreatment on intestinal I/R injury and on intestinal mucosa barrier. Thirty Wistar rats were randomly divided into: sham, I/R, and curcumin groups (n=10). Animals in curcumin group were pretreated with curcumin by gastric gavage (200 mg/kg) for 2 days before I/R. Small intestine tissues were prepared for Haematoxylin & Eosin (H&E) staining. Serum diamine oxidase (DAO) and tumor necrosis factor (TNF)-${\alpha}$ levels were measured. Expression of intestinal TNF-${\alpha}$ and tight junction protein (ZO-1) proteins was detected by Western blot and/or immunohistochemistry. Serum DAO level and serum and intestinal TNF-${\alpha}$ leves were significantly increased after I/R, and the values were markedly reduced by curcumin pretreatment although still higher than that of sham group (p<0.05 or p<0.001). H&E staining showed the significant injury to intestinal mucosa following I/R, and curcumin pretreatment significantly improved the histological structure of intestinal mucosa. I/R insult also induced significantly down-regulated expression of ZO-1, and the effect was dramatically attenuated by curcumin-pretreatment. Curcumin may protect the intestine from I/R injury through restoration of the epithelial structure, promotion of the recovery of intestinal permeability, as well as enhancement of ZO-1 protein expression, and this effect may be partly attributed to the TNF-${\alpha}$ related pathway.

Host-Microbe Interactions Regulate Intestinal Stem Cells and Tissue Turnover in Drosophila

  • Ji-Hoon Lee
    • International Journal of Stem Cells
    • /
    • v.17 no.1
    • /
    • pp.51-58
    • /
    • 2024
  • With the activity of intestinal stem cells and continuous turnover, the gut epithelium is one of the most dynamic tissues in animals. Due to its simple yet conserved tissue structure and enteric cell composition as well as advanced genetic and histologic techniques, Drosophila serves as a valuable model system for investigating the regulation of intestinal stem cells. The Drosophila gut epithelium is in constant contact with indigenous microbiota and encounters externally introduced "non-self" substances, including foodborne pathogens. Therefore, in addition to its role in digestion and nutrient absorption, another essential function of the gut epithelium is to control the expansion of microbes while maintaining its structural integrity, necessitating a tissue turnover process involving intestinal stem cell activity. As a result, the microbiome and pathogens serve as important factors in regulating intestinal tissue turnover. In this manuscript, I discuss crucial discoveries revealing the interaction between gut microbes and the host's innate immune system, closely associated with the regulation of intestinal stem cell proliferation and differentiation, ultimately contributing to epithelial homeostasis.

Supplemental effects of different production methods of pine needle additives on growth performance, intestinal environment, meat quality and serum of broiler chickens

  • Yi-Qiang Chang;Seung-Kyu Moon;Yan-Qing Wang;Liu-Ming Xie;Hang-sul Cho;Soo-Ki Kim
    • Animal Bioscience
    • /
    • v.37 no.7
    • /
    • pp.1263-1276
    • /
    • 2024
  • Objective: Pine needles are rich in many nutrients and exhibit antibacterial and antioxidant biological activities; however, the effects of different production methods of pine needle additives on the growth performance and intestinal flora of broiler chickens are not known. Methods: Normal diets were supplemented with pine needle fermentation juice (PNF), pine needle soaking juice (PNS), or pine needle powder (PNP), and the associated effects on growth performance, relative organ weights, intestinal development, intestinal histological morphology, intestinal flora, meat quality, and serum indicators in broiler chickens were observed. Results: The results showed that PNF, PNS, and PNP all significantly improved feed utilization and promoted the growth and development of broilers. All three additives also significantly improved the structure of the intestinal flora, specifically increasing the diversity of bacteria; increasing the abundance of beneficial bacteria, such as Faecalibacterium, Rikenella, and Blautia; and decreasing the abundance of harmful bacteria, such as Staphylococcus. The antioxidant properties of pine needles were also found to intensify lipid metabolic reactions in the blood, thus leading to lower triglycerides and total cholesterol. Meanwhile, high doses of PNF reduced jejunum and ileum weights and also increased meat yellowness. Lastly, none of PNF, PNS, or PNP had an effect on relative organ weights or intestinal histological morphology. Conclusion: The addition of pine needles to the diet of broiler chickens can effectively promote their growth performance as well as improve their intestinal flora and serum status without side effects; in particular, the dose of 0.2% of either PNF and PNS is expected to have the capacity to replace growth-promoting antibiotics as diet additives.

Culture-Based and Denaturing Gradient Gel Electrophoresis Analysis of the Bacterial Community Structure from the Intestinal Tracts of Earthworms (Eisenia fetida)

  • Hong, Sung-Wook;Kim, In-Su;Lee, Ju-Sam;Chung, Kun-Sub
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.9
    • /
    • pp.885-892
    • /
    • 2011
  • The bacterial communities in the intestinal tracts of earthworm were investigated by culture-dependent and -independent approaches. In total, 72 and 55 pure cultures were isolated from the intestinal tracts of earthworms under aerobic and anaerobic conditions, respectively. Aerobic bacteria were classified as Aeromonas (40%), Bacillus (37%), Photobacterium (10%), Pseudomonas (7%), and Shewanella (6%). Anaerobic bacteria were classified as Aeromonas (52%), Bacillus (27%), Shewanella (12%), Paenibacillus (5%), Clostridium (2%), and Cellulosimicrobium (2%). The dominant microorganisms were Aeromonas and Bacillus species under both aerobic and anaerobic conditions. In all, 39 DNA fragments were identified by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis. Aeromonas sp. was the dominant microorganism in feeds, intestinal tracts, and casts of earthworms. The DGGE band intensity of Aeromonas from feeds, intestinal tracts, and casts of earthworms was 12.8%, 14.7%, and 15.1%, respectively. The other strains identified were Bacillus, Clostridium, Enterobacter, Photobacterium, Pseudomonas, Shewanella, Streptomyces, uncultured Chloroflexi bacterium, and uncultured bacterium. These results suggest that PCR-DGGE analysis was more efficient than the culturedependent approach for the investigation of bacterial diversity and the identification of unculturable microorganisms.

Antibacterial Activities of Persimmon Roots-derived Materials and 1,4-Naphthoquinone's Derivatives against Intestinal Bacteria

  • Kim, Hyung-Wook;Lee, Chi-Hoon;Lee, Hoi-Seon
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.755-760
    • /
    • 2009
  • The growth-inhibiting activities of persimmon roots-derived materials against intestinal bacteria were evaluated and compared with that of 1,4-naphthoquinone as a positive control. The active constituent isolated from persimmon roots was characterized as 5-hydroxy-2-methyl-1,4-naphthoquinone using various spectroscopic analyses. Treatment with 1,4-naphthoquinone at a dose of 1.0 mg/disc strongly inhibited the growth of 6 intestinal bacteria. Furthermore, when the structure-activity relationships of 1,4-naphthoquinone's derivatives were evaluated, 5-hydroxy-2-methyl-1,4-naphthoquinone and 2-methyl-1,4-naphthoquinone were found to strongly inhibit the growth of Clostridium difficile, Clostridium perfringens, and Escherichia coli without adversely affecting the growth of Bifidobacterium adolescentis, Bifidobacterium longum, and Lactobacillus acidophilus. Additionally, 2-hydroxy-1,4-naphthoquinone and 5-hydroxy-1,4-naphthoquinone strongly inhibited the growth of C. difficile and C. perfringens, but did not inhibit the growth of E. coli. Taken together, these results indicate that persimmon roots-derived materials and some of 1,4-naphthoquinone's derivatives could be useful preventive agents against diseases caused by harmful intestinal bacteria.

Establishment of intestinal organoids from small intestine of growing cattle (12 months old)

  • Kang Won, Park;Hyeon, Yang;Min Gook, Lee;Sun A, Ock;Hayeon, Wi;Poongyeon, Lee;In-Sul, Hwang;Jae Gyu, Yoo;Choon-Keun, Park;Bo Ram, Lee
    • Journal of Animal Science and Technology
    • /
    • v.64 no.6
    • /
    • pp.1105-1116
    • /
    • 2022
  • Recently, we reported the robust in vitro three-dimensional (3D) expansion of intestinal organoids derived from adult bovine (> 24 months) samples. The present study aimed to establish an in vitro 3D system for the cultivation of intestinal organoids derived from growing cattle (12 months old) for practical use as a potential alternative to in vivo systems for various purposes. However, very few studies on the functional characterization and 3D expansion of adult stem cells from livestock species compared to those from other species are available. In this study, intestinal crypts, including intestinal stem cells, from the small intestines (ileum and jejunum) of growing cattle were isolated and long-term 3D cultures were successfully established using a scaffold-based method. Furthermore, we generated an apical-out intestinal organoid derived from growing cattle. Interestingly, intestinal organoids derived from the ileum, but not the jejunum, could be expanded without losing the ability to recapitulate crypts, and these organoids specifically expressed several specific markers of intestinal stem cells and the intestinal epithelium. Furthermore, these organoids exhibited key functionality with regard to high permeability for compounds up to 4 kDa in size (e.g., fluorescein isothiocyanate [FITC]-dextran), indicating that apical-out intestinal organoids are better than other models. Collectively, these results indicate the establishment of growing cattle-derived intestinal organoids and subsequent generation of apical-out intestinal organoids. These organoids may be valuable tools and potential alternatives to in vivo systems for examining host-pathogen interactions involving epithelial cells, such as enteric virus infection and nutrient absorption, and may be used for various purposes.

Effects of Dietary Glutamine and Glutamate Supplementation on Small Intestinal Structure, Active Absorption and DNA, RNA Concentrations in Skeletal Muscle Tissue of Weaned Piglets during d 28 to 42 of Age

  • Liu, Tao;Peng, Jian;Xiong, Yuanzhu;Zhou, Shiqi;Cheng, Xuehui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.2
    • /
    • pp.238-242
    • /
    • 2002
  • Seventy-four piglets were used to investigate the effects of dietary glutamine (Gln) and glutamate (Glu) on the mucosal structure and active absorption of small intestinal, DNA and RNA concentrations of skeletal muscle tissue in piglets during d 28 to 42 of age. Postweaning piglets were fed for 14 d corn- and soybean meal-based diets supplemented with 0.0 or 1.0% L-Gln or L-Glu. On d 7 and 14 postweaning, pigs' small intestinal sections and longissimus dorsi were collected, at the same time, the D-xylose absorption test was conducted. The results suggested that in comparison to control piglets, jejunal atrophy during the first week postweaning was prevented by the glutamine and glutamate supplementation (1%) and the capability of small intestine to absorb Dxylose was improved. Furthermore the RNA concentration in skeletal muscle tissue was increased. These results provide an experimental basis for use of glutamine and glutamate on alleviating the weaning stresses and improving piglets' growth performance.

Grain Processing on Feed Efficiency for Beef Production (비육용 곡물사료의 가공방법과 증체효율)

  • 김영길
    • Journal of Life Science
    • /
    • v.5 no.3
    • /
    • pp.126-136
    • /
    • 1995
  • The studies had been conducted to evaluate the grain processing effects for ruminants on starch digestion, body weight gain and feed efficiency since 1970. This research deals with experimental results on chemical structure, gelatinization, microbial starch digestion in rumen, intestinal starch digestion in rumen, roles of protozoa, intestinal starch digestion of bypass starch, limits to starch digestion in small intestine. The grain processing has different effects on digestion, weight gain and feed efficiency when different grain sources and contents is used, and the quality and quantity of roughage is different. The economical and efficient method of grain processing should be selected considering weight gain and feed efficiency enhancement than digestibility.

  • PDF

β-Carotene prevents weaning-induced intestinal inflammation by modulating gut microbiota in piglets

  • Li, Ruonan;Li, Lingqian;Hong, Pan;Lang, Wuying;Hui, Junnan;Yang, Yu;Zheng, Xin
    • Animal Bioscience
    • /
    • v.34 no.7
    • /
    • pp.1221-1234
    • /
    • 2021
  • Objective: Weaning is an important stage in the life of young mammals, which is associated with intestinal inflammation, gut microbiota disorders, and even death. β-Carotene displays anti-inflammatory and antioxidant activities, which can prevent the development of inflammatory diseases. However, whether β-carotene can affect intestinal microbiota remains unclear. Methods: Twenty-four piglets were distributed into four groups: the normal suckling group (Con), the weaning group (WG), the weaning+β-carotene (40 mg/kg) group (LCBC), and the weaning+β-carotene (80 mg/kg) group (HCBC). The serum, jejunum, colon, and faeces were collected separately from each group. The effects of β-carotene on the phenotype, overall structure, and composition of gut microbiota were assessed in weaning piglets. Results: The results showed that β-carotene improved the growth performance, intestinal morphology and relieved inflammation. Furthermore, β-carotene significantly decreased the species from phyla Bacteroidetes and the genus Prevotella, and Blautia, and increased the species from the phyla Firmicutes and the genera p-75-a5, and Parabacteroides compared to the WG group. Spearman's correlation analysis showed that Prevotella and Blautia were positively correlated, and Parabacteroides and Synergistes were negatively correlated with the levels of interleukin-1β (IL-1β), IL-6, and tumour necrosis factor-α (TNF-α), while p-75-a5 showed negative correlation with IL-6 in serum samples from piglets. Conclusion: These findings indicate that β-carotene could alleviate weaning-induced intestinal inflammation by modulating gut microbiota in piglets. Prevotella may be a potential target of β-carotene in alleviating the weaning-induced intestinal inflammation in piglets.