• 제목/요약/키워드: Intestinal Microbial Diversity

검색결과 32건 처리시간 0.081초

국내에서 사육되는 Holstein 젖소과 Jersey 젖소의 대변 미생물 분석 : 비교연구 (Fecal Microbiota Profiling of Holstein and Jersey, in South Korea : A Comparative Study)

  • 하광수;서지원;양희건;박세원;이수영;박영경;이란희;정도연;양희종
    • 생명과학회지
    • /
    • 제33권7호
    • /
    • pp.565-573
    • /
    • 2023
  • 숙주 동물과 동물의 장내 미생물의 건강 또는 생산성에 대한 연구결과를 미루어 볼 때, 가축 동물의 장내 미생물에 대한 연구는 매우 중요하다. 본 연구는 국내에서 사육되는 젖소 중 홀스타인 종과 저지종 젖소의 장내 미생물을 분석하고 차세대 염기서열 분석을 통해 젖소 종에 따른 장내 미생물 군집 구조의 차이를 규명하고자 하였다. 젖소의 원유 생산과 관련있는 것으로 알려진 종 풍부도와 종 다양성 지수 분석 결과 대부분의 풍부도 및 다양성 지수가 홀스타인 종 보다 저지 종에서 유의한 수준으로 높은 것으로 나타났으나, 종 간의 계통학적 거리를 합산하여 산출되는 phylogenetic diversity 지수는 낮은 것으로 나타났다. 미생물 분포 분석 결과 홀스타인과 저지 종의 두 집단 장내 미생물 군집 구조가 다른 것으로 나타났다. 두 종의 젖소에서 과(family) 수준의 다양한 장내 미생물간의 분포에 상관관계가 있는 것으로 나타났으며, 특히 저지 종의 장내 미생물은 다양한 미생물 분포 사이에 매우 유의한 수준의 상관관계가 있는 것으로 나타났다. 두 종의 젖소 장내 미생물 구조에 차이가 있는지 확인하기 위해 beta-diversity 분석을 수행하였으며, PCoA 분석과 UPGMA clustering 분석 결과 두 그룹의 cluster가 명확히 분리되는 것을 시각적으로 확인하였으며, PERMANOVA 분석 결과 두 종의 장내 미생물 군집 구조가 통계적으로 매우 유의한 수준의 차이가 있는 것으로 나타났다. 두 젖소 종의 장내 미생물 군집 구조 차이에 기여하는 미생물을 확인하기 위해 LEfSe 분석을 수행하였으며, 그 결과 Firmicutes, Bacilli, Moraxellaceae, Pseudomonadales 등의 상대적인 미생물 분포 차이가 두 그룹간 장내 미생물 군집 구조 차이에 가장 큰 영향을 미치는 것으로 나타났다.

Characterization of the bacterial microbiota across the different intestinal segments of the Qinghai semi-fine wool sheep on the Qinghai-Tibetan Plateau

  • Wang, Xungang;Hu, Linyong;Liu, Hongjin;Xu, Tianwei;Zhao, Na;Zhang, Xiaoling;Geng, Yuanyue;Kang, Shengping;Xu, Shixiao
    • Animal Bioscience
    • /
    • 제34권12호
    • /
    • pp.1921-1929
    • /
    • 2021
  • Objective: The intestinal microbiota enhances nutrient absorption in the host and thus promotes heath. Qinghai semi-fine wool sheep is an important livestock raised in the Qinghai-Tibetan Plateau; however, little is known about the bacterial microbiota of its intestinal tract. The aim of this study was to detect the microbial characterization in the intestinal tract of the Qinghai semi-fine wool sheep. Methods: The bacterial profiles of the six different intestinal segments (duodenum, jejunum, ileum, cecum, colon and rectum) of Qinghai semi-fine wool sheep were studied using 16S rRNA V3-V4 hypervariable amplicon sequencing. Results: A total of 2,623,323 effective sequences were obtained, and 441 OTUs shared all six intestinal segments. The bacterial diversity was significantly different among the different intestinal segments, and the large intestine exhibited higher bacterial diversity than the small intestine. Firmicutes, Bacteroidetes, and Patescibacteria were the dominant phyla in these bacterial communities. Additionally, at the genus level, Prevotella_1, Candidatus_Saccharimonas, and Ruminococcaceae_UCG-005 were the most predominant genus in duodenal segment, jejunal and ileal segments, and cecal, colonic, and rectal segments, respectively. We predicted that the microbial functions and the relative abundance of the genes involved in carbohydrate metabolism were overrepresented in the intestinal segments of Qinghai semi-fine wool sheep. Conclusion: The bacterial communities and functions differed among different intestinal segments. Our study is the first to provide insights into the composition and biological functions of the intestinal microbiota of Qinghai semi-fine wool sheep. Our results also provide useful information for the nutritional regulation and production development in Qinghai semi-fine wool sheep.

Bacterial diversity and its relationship to growth performance of broilers

  • Bae, Yeonji;Koo, Bonsang;Lee, Seungbaek;Mo, Jongsuk;Oh, Kwanghyun;Mo, In Pil
    • 대한수의학회지
    • /
    • 제57권3호
    • /
    • pp.159-167
    • /
    • 2017
  • The microbial community is known to have a key role during the rearing period of broilers. In this study, gut microbial composition and diversity were examined to evaluate the relationships between these factors and broiler growth performance. By applying 454-pyrosequencing of the V1-V3 regions of bacterial 16S rRNA genes, six fecal samples from four- and 28-day-old chickens from three broiler farms and 24 intestinal samples of broilers with heavy and light body weights were analyzed. Microbial composition assessment revealed Firmicutes to be the most prevalent phylum at farm A, while Proteobacteria were predominant at farms B and C. Fecal microbial richness and diversity indices gradually increased from four to 28 days at all three farms. Microbial diversity assessment revealed that small intestine microbial diversity was lower in heavy birds than in light birds. In light birds, the Firmicutes proportion was lower than that in heavy birds. In conclusion, each broiler farm revealed a specific microbial profile which varied with the age of the birds. The microbial communities appeared to affect growth performance; therefore, gut microbial profiles can be utilized to monitor growth performance at broiler farms.

Zerumbone Restores Gut Microbiota Composition in ETBF Colonized AOM/DSS Mice

  • Cho, Hye-Won;Rhee, Ki-Jong;Eom, Yong-Bin
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권11호
    • /
    • pp.1640-1650
    • /
    • 2020
  • Colorectal cancer (CRC) is the leading cause of common malignant neoplasm worldwide. Many studies have analyzed compositions of gut microbiota associated with various diseases such as inflammatory bowel diseases (IBD) and colon cancer. One of the most representative bacteria involved in CRC is enterotoxigenic Bacteroides fragilis (ETBF), a species belonging to phylum Bacteroidetes. We used ETBF colonized mice with azoxymethane (AOM)/dextran sulphate sodium (DSS) and zerumbone, a compound with anti-bacterial effect, to determine whether zerumbone could restore intestinal microbiota composition. Four experimental groups of mice were used: sham, ETBF colonized AOM/DSS group, ETBF colonized AOM/DSS group zerumbone 60 mg kg-1 (ETBF/AOM/DSS + Z (60)), and only zerumbone (60 mg kg-1)-treated group. We performed reversible dye terminators-based analysis of 16S rRNA gene region V3-V4 for group comparison. Microbiota compositions of ETBF/AOM/DSS + Z (60) group and ETBF colonized AOM/DSS group not given zerumbone were significantly different. There were more Bacteroides in ETBF/AOM/DSS + Z (60) group than those in ETBF colonized AOM/DSS group, suggesting that B. fragilis could be a normal flora activated by zerumbone. In addition, based on linear discriminant analysis of effect size (LEfSe) analysis, microbial diversity decreased significantly in the ETBF colonized AOM/DSS group. However, after given zerumbone, the taxonomic relative abundance was increased. These findings suggest that zerumbone not only influenced the microbial diversity and richness, but also could be helpful for enhancing the balance of gut microbial composition. In this work, we demonstrate that zerumbone could restore the composition of intestinal microbiota.

PCR-DGGE를 통해 분석한 항암치료에 따른 장내 미생물 변화 (A PCR Denaturing Gradient Gel Electrophoresis (DGGE) Analysis of Intestinal Microbiota in Gastric Cancer Patients Taking Anticancer Agents)

  • 유선녕;안순철
    • 생명과학회지
    • /
    • 제27권11호
    • /
    • pp.1290-1298
    • /
    • 2017
  • 인체의 장내에 존재하는 장내 미생물은 서로 공생 또는 길항 관계를 유지하며 우리 몸의 면역 방어 기전에 중요한 요소로 작용한다. 본 연구는 항암제가 위암 환자의 장내 미생물 생태계에 미치는 영향을 조사 하였다. 항암치료를 받는 환자의 분변에서 genomic DNA를 추출하고, 16S rDNA 유전자에 대한 denaturing gradient gel electrophoresis (DGGE)를 수행하였다. 분석된 균주는 개체간의 차이가 있었으나, 대부분 사람의 장내에 살고 있는 normal flora로 동정되었다. 모든 분변에 존재하는 5 개 밴드의 서열 분석 결과에 의하면 Faecalibacterium prausnitzii, Morganella morganii 및 Uncultured bacterium sp.가 나타났고, 항암제 처리 후 Sphingomonas paucimobilis, Lactobacillus gasseri, Parabacteroides distasonis 및 Enterobacter sp.가 증가하였다. 이 연구에서 probiotic으로 알려진 Bifidobacterium과 Lactobacillus를 특이적 PCR primer를 이용하여 동정한 결과, 항암제 투여로 인해 Bifidobacterium과 Lactobacillus의 개체군이 현저하게 줄어들어 diarrhea와 같은 부작용의 원인을 예상하게 하며, 장내 생태계의 주요 박테리아 집단에도 중요한 영향을 미치는 것을 알 수 있었다. 이러한 결과는 항암제 투여와 같이 시간의 흐름에 따른 균총의 변화를 시각적으로 모니터링하기 위하여 PCR-DGGE 분석법이 유용하다는 것을 나타낸다.

Changes in Gut Microbial Community of Pig Feces in Response to Different Dietary Animal Protein Media

  • Jeong, Yujeong;Park, Jongbin;Kim, Eun Bae
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권9호
    • /
    • pp.1321-1334
    • /
    • 2020
  • Beef, pork, chicken and milk are considered representative protein sources in the human diet. Since the digestion of protein is important, the role of intestinal microflora is also important. Despite this, the pure effects of meat and milk intake on the microbiome are yet to be fully elucidated. To evaluate the effect of beef, pork, chicken and milk on intestinal microflora, we observed changes in the microbiome in response to different types of dietary animal proteins in vitro. Feces were collected from five 6-week-old pigs. The suspensions were pooled and inoculated into four different media containing beef, pork, chicken, or skim milk powder in distilled water. Changes in microbial communities were analyzed using 16S rRNA sequencing. The feces alone had the highest microbial alpha diversity. Among the treatment groups, beef showed the highest microbial diversity, followed by pork, chicken, and milk. The three dominant phyla were Proteobacteria, Firmicutes, and Bacteroidetes in all the groups. The most abundant genera in beef, pork, and chicken were Rummeliibacillus, Clostridium, and Phascolarctobacterium, whereas milk was enriched with Streptococcus, Lactobacillus, and Enterococcus. Aerobic bacteria decreased while anaerobic and facultative anaerobic bacteria increased in protein-rich nutrients. Functional gene groups were found to be over-represented in protein-rich nutrients. Our results provide baseline information for understanding the roles of dietary animal proteins in reshaping the gut microbiome. Furthermore, growth-promotion by specific species/genus may be used as a cultivation tool for uncultured gut microorganisms.

넙치(Paralichthys olivaceus) 장관의 배양 및 비배양 방법에 의한 세균의 다양성 (Diversity of Cultured and Uncultured Bacteria in the Gut of Olive Flounder Paralichthys olivaceus)

  • 김아란;김도형
    • 한국수산과학회지
    • /
    • 제48권4호
    • /
    • pp.447-453
    • /
    • 2015
  • We determined the optimal culture conditions for obtaining the maximum number of intestinal bacteria from the olive flounder Paralichthys olivaceus, and studied bacterial diversity using both culture-dependent and culture-independent methods. Using six culture conditions, mean bacterial numbers were greater than $10^6$ per gram of gut mucus, regardless of the medium. However, the bacterial diversity, based on colony morphology, appeared much higher on Marine agar (MA) and Zobell 2216 agar than on other media. We found eight and 17 cultured bacterial phylotypes with 99% minimum similarity in gut mucus grown on MA and tryptic soy agar, respectively. Furthermore, we used genomic DNA extracted from gut mucus to generate 78 random clones, which were grouped into 25 phylotypes. Of these, six were affiliated with Firmicutes, Actinobacteria, and Verrucomicrobia, and were not found using our culture-dependent methods. Consequently, we believe that Marine agar and Zobell 2216 agar are optimal media for culturing diverse intestinal microbes; we also discovered several novel sequences not previously recognized as part of the gut microbiota of olive flounder.

Improvement of Inflammation, Diabetes, and Obesity by Forest Product-Derived Polysaccharides through the Human Intestinal Microbiota

  • Seong-woo MYEONG;Yong Ju LEE;Do Hyun KIM;Tae-Jong KIM
    • Journal of the Korean Wood Science and Technology
    • /
    • 제51권5호
    • /
    • pp.358-380
    • /
    • 2023
  • The intestinal microbiota plays a crucial role in determining human health, rendering it a major focus of scientific investigation. Rather than eliminating all microbes, promoting the proliferation of beneficial microorganisms within the gut has been recognized as a more effective approach to improving health. Unfavorable conditions potentially alter gut microbial populations, including a reduction in microbial diversity. However, intentionally enhancing the abundance of beneficial gut microbes can restore a state of optimal health. Polysaccharides are widely acknowledged for their potential to improve the gut microbiota. This review emphasizes the findings of recent studies examining the effects of forest product-derived polysaccharides on enhancing the gut microbiota and alleviating inflammation, diabetes symptoms, and obesity. The findings of several studies reviewed in this paper strongly suggest that forest products serve as an excellent dietary source for improving the gut microbiota and potentially offer valuable dietary interventions for chronic health problems, such as inflammation, diabetes, and obesity.

The Role of Functional Feed Additives in Modulating Intestinal Health and Integrity

  • Kocher, Andreas
    • 한국가금학회지
    • /
    • 제39권1호
    • /
    • pp.33-37
    • /
    • 2012
  • One of the biggest challenges for the animal feed industry in the coming years will be to meet the growing demand in animal protein in light of increased cost of feed ingredient as well as tougher restrictions on the use of antimicrobial growth promoters imposed by consumers and governments. A key focus area will be to maximise feed efficiency and minimise nutrient waste. It has been widely acknowledged that the composition of the intestinal microflora is closely related to intestinal health and performance of animals. Advanced microbial techniques have shown a close relationship between bacterial communities and their ability to modulate nutrient absorption and processing. In addition it has been recognised that modulating the immune response has significant impact on overall health as well as overall nutrient demand. Molecular techniques are a useful tool to gain an understanding of the impact of dietary interventions including the use of functional feed additives on specific changes in microbial communities or the immune system. Most these techniques however focus on the evaluation of large changes in bacterial compositions and often underestimate or neglect to recognise small changes in microbial diversity or behaviour changes without any measurable immune response. The key to understanding the relationship between specific nutritional intervention and the impact on health and performance lies in a deeper understanding of the impact of these nutrients on the expression of specific genes or specific metabolic pathways. The development of molecular tools as a result of developments in the field of Nutrigenomics has enabled researchers to study the effects of specific nutrients on the whole genome or in other words, the effect of thousands of genes simultaneously, and has opened a completely different avenue for nutritional research.

Intestinal Microbial Dysbiosis in Beagles Naturally Infected with Canine Parvovirus

  • Park, Jun Seok;Guevarra, Robin B.;Kim, Bo-Ra;Lee, Jun Hyung;Lee, Sun Hee;Cho, Jae Hyoung;Kim, Hyeri;Cho, Jin Ho;Song, Minho;Lee, Ju-Hoon;Isaacson, Richard E.;Song, Kun Ho;Kim, Hyeun Bum
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권9호
    • /
    • pp.1391-1400
    • /
    • 2019
  • Canine parvoviral enteritis (PVE) is an important intestinal disease of the puppies; however, the potential impact of the canine parvovirus (CPV) on the gut microbiota has not been investigated. Therefore, the aim of this study was to evaluate the gut microbial shifts in puppies naturally infected with CPV. Fecal samples were collected from healthy dogs and those diagnosed with PVE at 4, 6, 8, and 12 weeks of age. The distal gut microbiota of dogs was characterized using Illumina MiSeq sequencing of the bacterial 16S rRNA genes. The sequence data were analyzed using QIIME with an Operational Taxonomic Unit definition at a similarity cutoff of 97%. Our results showed that the CPV was associated with significant microbial dysbiosis of the intestinal microbiota. Alpha diversity and species richness and evenness in dogs with PVE decreased compared to those of healthy dogs. At the phylum level, the proportion of Proteobacteria was significantly enriched in dogs with PVE while Bacteroidetes was significantly more abundant in healthy dogs (p < 0.05). In dogs with PVE, Enterobacteriaceae was the most abundant bacterial family accounting for 36.44% of the total bacterial population compared to only 0.21% in healthy puppies. The two most abundant genera in healthy dogs were Prevotella and Lactobacillus and their abundance was significantly higher compared to that of dogs with PVE (p < 0.05). These observations suggest that disturbances of gut microbial communities were associated with PVE in young dogs. Evaluation of the roles of these bacterial groups in the pathophysiology of PVE warrants further studies.