Browse > Article
http://dx.doi.org/10.4014/jmb.2003.03021

Changes in Gut Microbial Community of Pig Feces in Response to Different Dietary Animal Protein Media  

Jeong, Yujeong (Department of Applied Animal Science, College of Animal Life Science, Kangwon National University)
Park, Jongbin (Department of Animal Life Science, College of Animal Life Science, Kangwon National University)
Kim, Eun Bae (Department of Applied Animal Science, College of Animal Life Science, Kangwon National University)
Publication Information
Journal of Microbiology and Biotechnology / v.30, no.9, 2020 , pp. 1321-1334 More about this Journal
Abstract
Beef, pork, chicken and milk are considered representative protein sources in the human diet. Since the digestion of protein is important, the role of intestinal microflora is also important. Despite this, the pure effects of meat and milk intake on the microbiome are yet to be fully elucidated. To evaluate the effect of beef, pork, chicken and milk on intestinal microflora, we observed changes in the microbiome in response to different types of dietary animal proteins in vitro. Feces were collected from five 6-week-old pigs. The suspensions were pooled and inoculated into four different media containing beef, pork, chicken, or skim milk powder in distilled water. Changes in microbial communities were analyzed using 16S rRNA sequencing. The feces alone had the highest microbial alpha diversity. Among the treatment groups, beef showed the highest microbial diversity, followed by pork, chicken, and milk. The three dominant phyla were Proteobacteria, Firmicutes, and Bacteroidetes in all the groups. The most abundant genera in beef, pork, and chicken were Rummeliibacillus, Clostridium, and Phascolarctobacterium, whereas milk was enriched with Streptococcus, Lactobacillus, and Enterococcus. Aerobic bacteria decreased while anaerobic and facultative anaerobic bacteria increased in protein-rich nutrients. Functional gene groups were found to be over-represented in protein-rich nutrients. Our results provide baseline information for understanding the roles of dietary animal proteins in reshaping the gut microbiome. Furthermore, growth-promotion by specific species/genus may be used as a cultivation tool for uncultured gut microorganisms.
Keywords
Protein; protein utilizing bacteria; meat; milk; fecal contamination; gut microbiome;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Nageshwar Reddy D. 2015. Role of the normal gut microbiota. World J. Gastroenterol. 21: 8787-8803.   DOI
2 Krzysciak W, Pluskwa KK, Jurczak A, Koscielniak D. 2013. The pathogenicity of the Streptococcus genus. Eur. J. Clin. Microbiol. Infect. Dis. 32: 1361-1376.   DOI
3 Giard JC, Laplace JM, Rincé A, Pichereau V, Benachour A, Leboeuf C, et al. 2001. The stress proteome of Enterococcus faecalis. Electrophoresis 22: 2947-2954.   DOI
4 Madsen L, Myrmel LS, Fjære E, Liaset B, Kristiansen K. 2017. Links between dietary protein sources, the gut microbiota, and obesity. Front. Physiol. 8: 1047.   DOI
5 Yu J, Kroll JS. 1999. DsbA: A protein-folding catalyst contributing to bacterial virulence. Microbes Infect. 1: 1221-1228.   DOI
6 Smith EA, Macfarlane GT. 1997. Dissimilatory amino Acid metabolism in human colonic bacteria. Anaerobe 3: 327-337.   DOI
7 de Vos WM, Vaughan EE. 1994. Genetics of lactose utilization in lactic acid bacteria. FEMS Microbiol. Rev. 15: 217-237.   DOI
8 Kubota H, Senda S, Nomura N, Tokuda H, Uchiyama H. 2008. Biofilm formation by lactic acid bacteria and resistance to environmental stress. J. Biosci. Bioeng. 106: 381-386.   DOI
9 Jefferson KK. 2004. What drives bacteria to produce a biofilm? FEMS Microbiol. Lett. 236: 163-173.   DOI
10 Lin L, Zhang J. 2017. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases. BMC Immunol. 18: 2.   DOI
11 Bibbo S, Ianiro G, Giorgio V, Scaldaferri F, Masucci L, Gasbarrini A, et al. 2016. The role of diet on gut microbiota composition. Eur. Rev. Med. Pharmacol. Sci. 20: 4742-4749.
12 Zhang Z, Li D, Tang R. 2019. Changes in mouse gut microbial community in response to the different types of commonly consumed meat. Microorganisms 7: 76.   DOI
13 Xue Z, Zhang J, Zhang R, Huang Z, Wan Q, Zhang Z. 2019. Comparative analysis of gut bacterial communities in housefly larvae fed different diets using a high-throughput sequencing approach. FEMS Microbiol. Lett. 366: fnz126.
14 Zhu Y, Lin X, Zhao F, Shi X, Li H, Li Y, et al. 2015. Meat, dairy and plant proteins alter bacterial composition of rat gut bacteria. Sci. Rep. 5: 15220.   DOI
15 Han GG, Lee JY, Jin GD, Park J, Choi YH, Chae BJ, et al. 2017. Evaluating the association between body weight and the intestinal microbiota of weaned piglets via 16S rRNA sequencing. Appl. Microbiol. Biotechnol. 101: 5903-5911.   DOI
16 Lim J-S, Yang SH, Kim B-S, Lee EY. 2018. Comparison of microbial communities in swine manure at various temperatures and storage times. Asian-australas. J. Anim. Sci. 31: 1373.   DOI
17 Costa A, Lopez-Villalobos N, Sneddon NW, Shalloo L, Franzoi M, De Marchi M, et al. 2019. Invited review: Milk lactose-current status and future challenges in dairy cattle. J. Dairy Sci. 102: 5883-5898.   DOI
18 Bacun-Druzina V, Mrvcic J, Butorac A, Gjuracic KJMczupipm. 2009. The influence of gene transfer on the lactic acid bacteria evolution. Mljekarstvo 59: 181-192.
19 Olsen I. 2015. Biofilm-specific antibiotic tolerance and resistance. Eur. J. Clin. Microbiol. Infect. Dis. 34: 877-886.   DOI
20 Donlan RM. 2002. Biofilms: microbial life on surfaces. Emerg. Infect. Dis. 8: 881-890.   DOI
21 Leclerc H, Mossel D, Edberg S, Struijk C. 2001. Advances in the bacteriology of the coliform group: their suitability as markers of microbial water safety. Annu. Rev. Microbiol. 55: 201-234.   DOI
22 Clemente JC, Ursell LK, Parfrey LW, Knight R. 2012. The impact of the gut microbiota on human health: an integrative view. Cell 148: 1258-1270.   DOI
23 Ammar EM, Wang X, Rao CV. 2018. Regulation of metabolism in Escherichia coli during growth on mixtures of the non-glucose sugars: arabinose, lactose, and xylose. Sci. Rep. 8: 609.   DOI
24 Parsek MR, Singh PK. 2003. Bacterial biofilms: an emerging link to disease pathogenesis. Annu. Rev. Microbiol. 57: 677-701.   DOI
25 Davis BM, Waldor MK. 2002. Mobile genetic elements and bacterial pathogenesis, pp. 1040-1059. Mobile DNA II, Ed. American Society of Microbiology
26 Bodini S, Nunziangeli L, Santori F. 2007. Influence of amino acids on low-density Escherichia coli responses to nutrient downshifts. J. Bacteriol. 189: 3099-3105.   DOI
27 Juers DH, Matthews BW, Huber RE. 2012. LacZ $\beta$‐galactosidase: structure and function of an enzyme of historical and molecular biological importance. Protein Sci. 21: 1792-1807   DOI
28 Gao Z, Daliri EB, Wang J, Liu D, Chen S, Ye X, et al. 2019. Inhibitory effect of lactic acid bacteria on foodborne pathogens: a review. J. Food Prot. 82: 441-453.   DOI
29 Lindberg A-M, Ljungh Å, Ahrne S, Löfdahl S, Molin G. 1998. Enterobacteriaceae found in high numbers in fish, minced meat and pasteurised milk or cream and the presence of toxin encoding genes. Int. J. Food Microbiol. 39: 11-17.   DOI
30 Dai Z-L, Wu G, Zhu W-Y. 2011. Amino acid metabolism in intestinal bacteria: links between gut ecology and host health. Front. Biosci. 16: 1768-1786.   DOI
31 Zhao J, Zhang X, Liu H, Brown MA, Qiao S. 2019. Dietary protein and gut microbiota composition and function. Curr. Protein Pept. Sci. 20: 145-154.   DOI
32 Byun R, Carlier JP, Jacques NA, Marchandin H, Hunter N. 2007. Veillonella denticariosi sp. nov., isolated from human carious dentine. Int. J. Syst. Evol. Microbiol. 57: 2844-2848.   DOI
33 Sahlin K. 1986. Muscle fatigue and lactic acid accumulation. Acta Physiol. Scand. Suppl. 556: 83-91.
34 Edman AC, Lexell J, Sjostrom M, Squire JM. 1988. Structural diversity in muscle fibres of chicken breast. Cell. Tissue Res. 251: 281-289.   DOI
35 Stackebrandt E, Osawa R. 2015. Phascolarctobacterium. pp. 1-4. Bergey's Manual of Systematics of Archaea Bacteria.
36 Junpadit P, Suksaroj TT, Boonsawang P. 2017. Transformation of palm oil mill effluent to terpolymer polyhydroxyalkanoate and biodiesel using Rummeliibacillus pycnus strain TS 8. Waste Biomass. Valor. 8: 1247-1256.   DOI
37 Slobodkin A. 2014. The Family Peptostreptococcaceae, pp. 291-302. In: Rosenberg E., Delong EF, Lory S, Stackebrandt E, Thompson F (eds.), The Prokaryotes, Springer, Berlin, Heidelberg
38 Li M, Li Y, Fan X, Qin Y, He Y, Lv Y. 2019. Draft genome sequence of Rummeliibacillus sp. strain TYF005, a physiologically recalcitrant bacterium with high ethanol and salt tolerance isolated from spoilage vinegar. Microbiol. Resour. Announc. 8: e00244-00219.
39 Her J, Kim J. 2013. Rummeliibacillus suwonensis sp. nov., isolated from soil collected in a mountain area of South Korea. J. Microbiol. 51: 268-272.   DOI
40 Tan HY, Chen SW, Hu SY. 2019. Improvements in the growth performance, immunity, disease resistance, and gut microbiota by the probiotic Rummeliibacillus stabekisii in Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 92: 265-275.   DOI
41 Shim Y, Kim J, Hosseindoust A, Ingale SL, Choi Y, Kim M J, et al. 2017. Effects of supplementation of multienzymes in diets containing different energy levels on growth performance, nutrient digestibility, blood metabolites, microbiota and intestinal morphology of broilers. Ann. Anim. Resour. Sci. 28: 97-107.   DOI
42 Giraffa G. 2003. Functionality of enterococci in dairy products. Int. J. Food Microbiol. 88: 215-222.   DOI
43 Iyer R, Tomar S, Maheswari TU, Singh R. 2010. Streptococcus thermophilus strains: multifunctional lactic acid bacteria. Int. Dairy J. 20: 133-141.   DOI
44 Wu F, Guo X, Zhang J, Zhang M, Ou Z, Peng YJE, et al. 2017. Phascolarctobacteriumáfaecium abundant colonization in human gastrointestinal tract. Exp. Ther. Med. 14: 3122-3126.   DOI
45 LeBlanc JG, Matar C, Valdez JC, LeBlanc J, Perdigon G. 2002. Immunomodulating effects of peptidic fractions issued from milk fermented with Lactobacillus helveticus. J. Dairy Sci. 85: 2733-2742.   DOI
46 Pereira PM, Vicente AF. 2013. Meat nutritional composition and nutritive role in the human diet. Meat. Sci. 93: 586-592.   DOI
47 Alcantara JMA, Sanchez-Delgado G, Martinez-Tellez B, Labayen I, Ruiz JR. 2019. Impact of cow's milk intake on exercise performance and recovery of muscle function: a systematic review. J. Int. Soc. Sports. Nutr. 16: 22.   DOI
48 Hess J, Slavin J. 2016. Defining "protein" foods. Nutr. Today 51: 117-120.   DOI
49 Fernandez M, Zuniga M. 2006. Amino acid catabolic pathways of lactic acid bacteria. Crit. Rev. Microbiol. 32: 155-183.   DOI
50 Khalid NM, Marth EH. 1990. Proteolytic activity by strains of Lactobacillus plantarum and Lactobacillus casei. J. Dairy Sci. 73: 3068-3076.   DOI
51 Akerstedt M, Wredle E, Lam V, Johansson M. 2012. Protein degradation in bovine milk caused by Streptococcus agalactiae. J. Dairy Res. 79: 297-303.   DOI
52 Siegumfeldt H, Bjorn Rechinger K, Jakobsen M. 2000. Dynamic changes of intracellular pH in individual lactic acid bacterium cells in response to a rapid drop in extracellular pH. Appl. Environ. Microbiol. 66: 2330-2335.   DOI
53 Rajagopal S, Sandine WJJods. 1990. Associative growth and proteolysis of Streptococcus thermophilus and Lactobacillus bulgaricus in skim milk. J. Dairy Sci. 73: 894-899.   DOI