Browse > Article
http://dx.doi.org/10.5657/KFAS.2015.0447

Diversity of Cultured and Uncultured Bacteria in the Gut of Olive Flounder Paralichthys olivaceus  

Kim, Ahran (Department of Aquatic Life Medicine, Pukyong National University)
Kim, Do-Hyung (Department of Aquatic Life Medicine, Pukyong National University)
Publication Information
Korean Journal of Fisheries and Aquatic Sciences / v.48, no.4, 2015 , pp. 447-453 More about this Journal
Abstract
We determined the optimal culture conditions for obtaining the maximum number of intestinal bacteria from the olive flounder Paralichthys olivaceus, and studied bacterial diversity using both culture-dependent and culture-independent methods. Using six culture conditions, mean bacterial numbers were greater than $10^6$ per gram of gut mucus, regardless of the medium. However, the bacterial diversity, based on colony morphology, appeared much higher on Marine agar (MA) and Zobell 2216 agar than on other media. We found eight and 17 cultured bacterial phylotypes with 99% minimum similarity in gut mucus grown on MA and tryptic soy agar, respectively. Furthermore, we used genomic DNA extracted from gut mucus to generate 78 random clones, which were grouped into 25 phylotypes. Of these, six were affiliated with Firmicutes, Actinobacteria, and Verrucomicrobia, and were not found using our culture-dependent methods. Consequently, we believe that Marine agar and Zobell 2216 agar are optimal media for culturing diverse intestinal microbes; we also discovered several novel sequences not previously recognized as part of the gut microbiota of olive flounder.
Keywords
Olive flounder; Microbial diversity; 16S rRNA gene; Fish disease; Intestine;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Angelakis E, Armougom F, Million M and Raoult D. 2012. The relationship between gut microbiota and weight gain in humans. Future Microbiol 7, 91-109. http://dx.doi.org/10.2217/fmb.11.142.   DOI
2 Asfie M, Yoshijima T and Sugita H. 2003. Characterization of the goldfish fecal microflora by the fluorescent in situ hybridization method. Fish Sci 69, 21-26. http://dx.doi.org/10.1046/j.1444-2906.2003.00583.x.   DOI
3 Candela M, Perna F, Carnevali P, Vitali B, Ciati R, Gionchetti P, Rizzello F, Campieri M and Brigidi P. 2008. Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells: adhesion properties, competition against enteropathogens and modulation of IL-8 production. Int J Food Microbiol 125, 286-292. http://dx.doi.org/10.1016/j.ijfoodmicro.2008.04.012.   DOI
4 Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR and Tiedje JM. 2013. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucl Acids Res 42,633-642. http://dx.doi.org/10.1093/nar/gkt1244.   DOI   ScienceOn
5 Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE and Relman DA. 2005. Diversity of the human intestinal microbial flora. Science 308, 1635-1638. http://dx.doi.org/ 10.1126/science.1110591.   DOI   ScienceOn
6 Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, Tobe T, Clarke JM, Toppng DL, Suzuki T, Taylor TD, Itoh K, Kikuchi J, Morita H, Hattori M and Ohno H. 2011. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469, 543-547. http://dx.doi.org/10.1038/nature09646.   DOI   ScienceOn
7 Gatesoupe FJ. 2010. Probiotics and other microbial manipulations in fish feeds: prospective health benefits. In: Bioactive foods in promoting health: probiotics and prebiotics. Watson W and Preedy V R, eds. Academic Press, San Diego, U.S.A., 541-552.
8 Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp 41, 95-98.
9 Han HJ, Kim DY, Kim WS, Kim CS, Jung SJ, Oh MJ and Kim DH. 2011. Atypical Aeromonas salmonicida infection in the black rockfish, Sebastes schlegeli Hilgendorf, in Korea. J Fish Dis 34, 47-55. http://dx.doi.org/10.1111/j.1365-2761.2010.01217.x.   DOI
10 Kim DH, Brunt J and Austin B. 2007. Microbial diversity of intestinal contents and mucus in rainbow trout(Oncorhynchus mykiss). J Appl Microbiol 102, 1654-1664. http://dx.doi.org/10.1111/j.1365-2672.2006.03185.x.   DOI
11 Kim DH and Kim DY. 2013. Microbial diversity in the intestine of olive flounder (Paralichthys olivaceus). Aquaculture 414, 103-108. http://dx.doi.org/10.1016/j.aquaculture. 2013.06.008.
12 Lane DJ. 1991. 16S/23S rRNA sequencing. Nucleic acid techniques in bacterial systematics. Stackebrandt E. and Goodfellow M, eds, Academic Press, Chichester, UK, 115-175.
13 Ley RE, Turnbaugh PJ, Klein S and Gordon JI. 2006. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022-1023. http://dx.doi.org/10.1038/4441022a.   DOI
14 Marchesi JR, Sato T, Weightman AJ, Martin TA, Fry JC, Hiom SJ and Wade WG. 1998. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64, 795-599.
15 Martin-Antonio B, Manchado M, Infante C, Zerolo R, Labella A, Alonso C and Borrego JJ. 2007. Intestinal microbiota variation in Senegalese sole (Solea senegalensis) under different feeding regimes. Aquacult Res 38, 1213-1222. http://dx.doi.org/10.1111/j.1365-2109.2007.01790.x.   DOI
16 Olszak T, An D, Zeissig S, Vera MP, Richter J, Franke A, Glickman JN, Siebert R, Baron RM, Kasper DL and Blumberg KR. 2012. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336, 489-493. http://dx.doi.org/10.1126/science.1219328.   DOI
17 Sugita H. and Ito Y. 2006. Identification of intestinal bacteria from Japanese flounder (Paralichthys olivaceus) and their ability to digest chitin. Lett Appl Microbiol 43, 336-342. http://dx.doi.org/10.1111/j.1472-765X.2006.01943.x.   DOI   ScienceOn
18 Saitou N and Nei M. 1987. The neighbor-joining method-a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406-425.
19 Sonnenburg J L, Xu J, Leip DD, Chen CH, Westover BP, Weatherford J, Buhler JD and Gordon JI. 2005. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307, 1955-1959. http://dx.doi.org/10.1126/science.1109051.   DOI
20 Sugita H, Okano R, Suzuki Y, Iwai D and Kanagawa F. 2002. Antibacterial abilities of intestinal bacteria from larval and juvenile Japanese flounder against fish pathogens. Fish Sci 68, 1004-1011. http://dx.doi.org.10.1046/j.1444-2906.2002.00525.x   DOI
21 Sun Y, Yang H, Ling Z, Chang J and Ye J. 2009. Gut microbiota of fast and slow growing grouper Epinephelus coioides. Afr J Microbiol Res 3, 713-720.
22 Tamura K, Peterson D, Peterson N, Stecher G, Nei M and Kumar S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28, 2731-2739. http://dx.doi.org/10.1093/molbev/msr121.   DOI
23 Wright ES, Yilmaz LS and Noguera DR. 2012. DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Appl Environ Microbiol 78, 717-725. http://dx.doi.org/10.1128/AEM.06516-11.   DOI
24 Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominquez-Bello MG, Contreras M, Margris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R and Gordon JI. 2012. Human gut microbiome viewed across age and geography. Nature 486, 222-227. http://dx.doi.org/10.1038/nature11053.