• Title/Summary/Keyword: Intestinal Growth

Search Result 601, Processing Time 0.029 seconds

Effect of Dietary Supplementation of Ground Grape Seed on Growth Performance and Antioxidant Status in the Intestine and Liver in Broiler Chickens (천연 항산화제로서 포도씨 분말 첨가가 육용계의 성장 및 항산화 작용에 미치는 영향)

  • Jang, I.S.;Ko, Y.H.;Kang, S.Y.;Moon, Y.S.;Shon, S.H.
    • Korean Journal of Poultry Science
    • /
    • v.34 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • A total of twenty, 2-wk-old male broiler chickens were allotted into control diet(CON) or a diet supplemented with 1% ground grape seed(GGS). They had free access to feed and water for 3 wk. Growth performance and antioxidant markers in plasma, intestine and liver were determined. Dietary addition of 1% GGS did not affect weight gain, feed intake, feed conversion and organ weight in 35 day-old broiler chickens significantly. There was no difference in plasma levels of glucose, triglyceride, cholesterol, AST, ALT and LDH activity. However, total antioxidant status(TAS) in blood increased(P<0.05) in chickens fed the diet supplemented with 1% GGS compared to those fed the control diet. In addition, the specific activity of intestinal superoxide dismutase(SOD) increased(P<0.05) in birds fed the diet supplemented with GGS. However, the activities of intestinal gluthathione peroxidase(GSHPx) and gluthathione -S- transferase(GST) and hepatic SOD, GSHPx and GST were not affected by the dietary GGS. The levels of reduced glutathione and lipid peroxidation in the small intestine and liver were not different between the two groups. In conclusion, dietary supplementation of 1% GGS did not result in a negative effect on growth performance. In addition, some antioxidant indicators including blood TAS and intestinal SOD were markedly elevated in response to dietary GGS. Therefore, dietary addition of 1% GGS may be beneficial to improve antioxidant capacity in broiler chicken.

Feeding a calcium-enriched fatty acid could ameliorate the growth performance of broilers under the chronic heat stress

  • Kim, Yu Bin;Nawarathne, Shan Randima;Cho, Hyun Min;Hong, Jun Seon;Heo, Jung Min;Son, Jiseon
    • Journal of Animal Science and Technology
    • /
    • v.64 no.1
    • /
    • pp.84-96
    • /
    • 2022
  • The current study was conducted to evaluate the effect of calcium-enriched fatty acid supplementation on the growth performance, blood metabolites, intestinal morphology, carcass traits, and nutrient digestibility of broilers subjected to chronic heat stress. A total of 210 one-day-old broiler chicks (40.12 ± 0.25 g) were randomly allocated to one of five dietary treatments, to obtain six replicates per treatment. Broilers were subjected to chronic heat stress from day 21 to day 35, post-hatching, at 34℃ for 9 h per day. The body weight (BW) and feed intake of the experimental broilers were recorded weekly, and the average daily gain (ADG) and feed conversion ratio (FCR) were calculated accordingly. Rectal temperature was measured to compare the basal body temperatures between individuals, and blood samples were collected on days 21 and 35 to evaluate basal body temperature, serum total cholesterol, and the triglyceride content of the broilers. On days 21 and 35, one broiler from each cage (n=6) was euthanized to measure carcass trait parameters, nutrient digestibility in digesta, and intestinal morphology. On days 14, 28, and 35, the broilers fed 2.0% calcium-enriched fatty acids had higher BW (p < 0.05) than those fed the other diets. However, no differences (p > 0.05) were found in the average daily feed intake (ADFI) between dietary treatments over the 35 experimental days. On the other hand, on day 21, post-hatching, the broilers fed the 2.0% calcium-enriched fatty acid diet had improved (p < 0.05) dietary feed efficiencies compared to the other treatments. On day 28, the broilers fed the 5.0% of calcium-enriched fatty acid diet also had higher (p < 0.05) dietary feed efficiencies than those fed with the other dietary treatments. No effects (p > 0.05) on carcass weight, nutrient digestibility, intestinal morphology, or blood parameters were found between broilers fed with dietary treatments. This study demonstrated that the inclusion of an additive, containing 2.0% calcium-enriched fatty acid, to broiler diet could ameliorate the negative growth performance of broilers; and no interaction (p > 0.05) was observed between the calcium-enriched fatty acid and nutrient digestibility, digestive anatomy, blood metabolism, and carcass traits of broilers subjected to chronic heat stress conditions for 35 days post-hatching.

Effects of Replacing Soybean Meal with Fermented Rapeseed Meal on Performance, Serum Biochemical Variables and Intestinal Morphology of Broilers

  • Xu, F.Z.;Zeng, X.G.;Ding, X.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.12
    • /
    • pp.1734-1741
    • /
    • 2012
  • This trial was performed to study the effects of replacing soybean meal (SBM) with fermented rapeseed meal (RSM) on growth performance, serum biochemistry variable and intestinal morphology of broilers. A total of 640 d-old Arbor Acres broiler chicks were randomly allocated to 4 dietary treatments, 4 pens per treatment and 40 birds per pen for a 6-wk feeding trial. In the four treatment groups, fermented RSM replaced soybean meal at 0, 5, 10, and 15%, respectively. On 21 d and 42 d, two birds from each pen were randomly selected and slaughtered. Blood samples and sections of duodenum, jejunum, and ileum were collected for measurement of serum biochemical variables and intestinal morphology, respectively. Results showed that body weight gain (BWG) and feed conversion (FC) were significantly (p<0.01) poorer for birds fed the 15% fermented RSM diet than those fed with 0, 5 and 10% fermented RSM diets during all periods. Compared with 0 and 5% fermented RSM groups, IgG content in the serum of birds in 10 and 15% fermented RSM groups was improved (p<0.01) urea nitrogen content of serum was reduced (p<0.01) during both growing and finishing periods. However, IgM, phosphorus and calcium levels increased (p<0.05) only during the growing period. Increased (p<0.05) villus height was observed in the duodenum and jejunum of broilers fed the diet with 10% fermented RSM. In addition, villus height to crypt depth ratio in the jejunum was significantly higher (p<0.01) for birds fed the diet with 10% fermented RSM than for those fed diets with 0, 5 and 15% fermented RSM. The present results suggest that RSM fermented with Lactobacillus fermentum and Bacillus subtilis is a promising alternative protein source and that it could be safely used replace up to 10% SBM in broiler diets.

The Role of Functional Feed Additives in Modulating Intestinal Health and Integrity

  • Kocher, Andreas
    • Korean Journal of Poultry Science
    • /
    • v.39 no.1
    • /
    • pp.33-37
    • /
    • 2012
  • One of the biggest challenges for the animal feed industry in the coming years will be to meet the growing demand in animal protein in light of increased cost of feed ingredient as well as tougher restrictions on the use of antimicrobial growth promoters imposed by consumers and governments. A key focus area will be to maximise feed efficiency and minimise nutrient waste. It has been widely acknowledged that the composition of the intestinal microflora is closely related to intestinal health and performance of animals. Advanced microbial techniques have shown a close relationship between bacterial communities and their ability to modulate nutrient absorption and processing. In addition it has been recognised that modulating the immune response has significant impact on overall health as well as overall nutrient demand. Molecular techniques are a useful tool to gain an understanding of the impact of dietary interventions including the use of functional feed additives on specific changes in microbial communities or the immune system. Most these techniques however focus on the evaluation of large changes in bacterial compositions and often underestimate or neglect to recognise small changes in microbial diversity or behaviour changes without any measurable immune response. The key to understanding the relationship between specific nutritional intervention and the impact on health and performance lies in a deeper understanding of the impact of these nutrients on the expression of specific genes or specific metabolic pathways. The development of molecular tools as a result of developments in the field of Nutrigenomics has enabled researchers to study the effects of specific nutrients on the whole genome or in other words, the effect of thousands of genes simultaneously, and has opened a completely different avenue for nutritional research.

Experience with Enterostomy Closure in Very Low Birth Weight Infants (극소 저출생 체중아에서 조성한 장루의 복원 경험)

  • Shin, Hee-Chul;Moon, Suk-Bae;Lee, Seong-Cheol;Jung, Sung-Eun;Park, Kwi-Won
    • Advances in pediatric surgery
    • /
    • v.15 no.1
    • /
    • pp.18-26
    • /
    • 2009
  • The survival of Very Low Birth Weight (VLBW) infants has been improved with the advancement of neonatal intensive care. However, the incidence of accompanying gastrointestinal complications such as necrotizing enterocolitis has also been increasing. In intestinal perforation of the newborn, enterostomy with or without intestinal resection is a common practice, but there is no clear indication when to close the enterostomy. To determine the proper timing of enterostomy closure, the medical records of 12 VLBW infants who underwent enterostomy due to intestinal perforation between Jan. 2004 and Jul. 2007 were reviewed retrospectively. Enterostomy was closed when patients were weaned from ventilator, incubator-out and gaining adequate body weight. Pre-operative distal loop contrast radiographs were obtained to confirm the distal passage and complete removal of the contrast media within 24-hours. Until patients reached oral intake, all patients received central-alimentation. The mean gestational age of patients was $26^{+2}$ wks ($24^{+1}{\sim}33^{+0}$ wks) and the mean birth weight was 827 g (490~1450 g). The mean age and the mean body weight at the time of enterostomy formation were 15days (6~38 days) and 888 g (590~1870 g). The mean body weight gain was 18 g/day (14~25 g/day) with enterostomy. Enterostomy closure was performed on the average of 90days (30~123 days) after enterostomy formation. The mean age and the mean body weight were 105 days (43~136 days) and 2487 g (2290~2970 g) at the time of enterostomy closure. The mean body weight gain was 22 g/day after enterostomy closure. Major complications were not observed. In conclusion, the growth in VLBW infants having enterostomy was possible while supporting nutrition with central-alimentation and the enterostomy can be closed safely when the patient's body weights is more than 2.3 kg.

  • PDF

Effects of multi-strain probiotic supplementation on intestinal microbiota, tight junctions, and inflammation in young broiler chickens challenged with Salmonella enterica subsp. enterica

  • Chang, Chi Huan;Teng, Po Yun;Lee, Tzu Tai;Yu, Bi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.11
    • /
    • pp.1797-1808
    • /
    • 2020
  • Objective: This study assessed the effects of probiotics on cecal microbiota, gene expression of intestinal tight junction proteins, and immune response in the cecal tonsil of broiler chickens challenged with Salmonella enterica subsp. enterica. Methods: One-day-old broiler chickens (n = 240) were randomly allocated to four treatments: negative control (Cont), multi-strain probiotic-treated group (Pro), Salmonella-infected group (Sal), and multi-strain probiotic-treated and Salmonella-infected group (ProSal). All chickens except those in the Cont and Pro groups were gavaged with 1×108 cfu/mL of S. enterica subsp. enterica 4 days after hatching. Results: Our results indicated that body weight, weight gain, and feed conversion ratio of birds were significantly reduced (p<0.05) by Salmonella challenge. Chickens challenged with Salmonella decreased cecal microbial diversity. Chickens in the Sal group exhibited abundant Proteobacteria than those in the Cont, Pro, and ProSal groups. Salmonella infection downregulated gene expression of Occludin, zonula occludens-1 (ZO1), and Mucin 2 in the jejunum and Occludin and Claudin in the ileum. Moreover, the Sal group increased gene expression of interferon-γ (IFN-γ), interleukin-6 (IL-6), IL-1β, and lipopolysaccharide-induced tumor necrosis factor-alpha factor (LITAF) and reduced levels of transforming growth factor-β4 and IL-10 compared with the other groups (p<0.05). However, chickens receiving probiotic diets increased Lactobacillaceae abundance and reduced Enterobacteriaceae abundance in the ceca. Moreover, supplementation with probiotics increased the mRNA expression of Occludin, ZO1, and Mucin 2 in the ileum (p<0.05). In addition, probiotic supplementation downregulated the mRNA levels of IFN-γ (p<0.05) and LITAF (p = 0.075) and upregulated IL-10 (p = 0.084) expression in the cecal tonsil. Conclusion: The administration of multi-strain probiotics modulated intestinal microbiota, gene expression of tight junction proteins, and immunomodulatory activity in broiler chickens.

Orally administered Lactobacillus casei exhibited several probiotic properties in artificially suckling rabbits

  • Shen, Xue Mei;Cui, Hong Xiao;Xu, Xiu Rong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.8
    • /
    • pp.1352-1359
    • /
    • 2020
  • Objective: Lactobacilli in rabbit intestine is rare and its function in rabbit gut health is not fully understood. The present study aimed to evaluate in vivo the probiotic potential of Lactobacillus casei for suckling rabbits. Methods: Two healthy 5-day-old suckling rabbits with similar weights from each of 12 New Zealand White litters were selected and disturbed to control group and treatment group. All rabbits were artificially fed. The treatment group had been supplemented with live Lactobacillus casei in the milk from the beginning of the trial to 13 days of age. At 15 days of age, healthy paired rabbits were slaughtered to collect intestinal samples. Results: i) Oral administration of Lactobacillus casei significantly increased the proportion of Lactobacilli in the total intestinal bacteria (p<0.01) and obviously reduced that of Escherichia-Shigella (p<0.01); ii) treatment increased the length of vermiform appendix (p<0.05); iii) a higher percentage of degranulated paneth cells was observed in the duodenum and jejunum when rabbits administered with Lactobacillus casei (p<0.01); and iv) the expression of toll-like receptor 9, lysozyme (LYZ), and defensin-7-like (DEFEN) in the duodenum and jejunum was stimulated by supplemented Lactobacillus casei (p<0.05). Conclusion: Orally administered Lactobacillus casei could increase the abundance of intestinal Lactobacilli, decrease the relative abundance of intestinal Escherichia-Shigella, promote the growth of appendix vermiform, stimulate the degranulation of paneth cells and induce the expression of DEFEN and LYS. The results of the present study implied that Lactobacillus casei exhibited probiotic potential for suckling rabbits.

Effect of Extract of Fermented Dropwort on Intestinal Bacteria and Enzymes In Vitro (미나리발효액이 장내 유해세균 및 유익균의 In Vitro 생육 및 효소활성에 미치는 영향)

  • Lee, Kyung-Ae;Kim, Moo-Sung;Cho, Hong-Bum
    • Korean Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.358-361
    • /
    • 2008
  • Effect of extract of fermented dropwort (Oenanthe stolonifera) on growth of intestinal harmful/useful bacteria and enzyme activity were investigated in vitro. The extract showed strong inhibition on harmful microbes including Vibrio and Salmonella, but mild inhibition on Bifidobacterium longum in both agar plate and liquid cultivation. Minimum inhibitory concentration (MIC) value of B. longum was the highest among tested microbes. Inhibition effect of fermented extract on harmful microbes increased according to fermentation period. Extract of fermented dropwort showed inhibitory effects on activity of microbial ${\beta}$-glucuronidase and tryptophanase. The inhibitory effects were also proportional to fermentation period. As consequence, it is assumed that the uptake of fermented dropwort might be useful for human intestinal health.

Phytobiotics to improve health and production of broiler chickens: functions beyond the antioxidant activity

  • Kikusato, Motoi
    • Animal Bioscience
    • /
    • v.34 no.3_spc
    • /
    • pp.345-353
    • /
    • 2021
  • Phytobiotics, also known as phytochemicals or phytogenics, have a wide variety of biological activities and have recently emerged as alternatives to synthetic antibiotic growth promoters. Numerous studies have reported the growth-promoting effects of phytobiotics in chickens, but their precise mechanism of action is yet to be elucidated. Phytobiotics are traditionally known for their antioxidant activity. However, extensive investigations have shown that these compounds also have anti-inflammatory, antimicrobial, and transcription-modulating effects. Phytobiotics are non-nutritive constituents, and their bioavailability is low. Nonetheless, their beneficial effects have been observed in several tissues or organs. The health benefits of the ingestion of phytobiotics are attributed to their antioxidant activity. However, several studies have revealed that not all these benefits could be explained by the antioxidant effects alone. In this review, I focused on the bioavailability of phytobiotics and the possible mechanisms underlying their overall effects on intestinal barrier functions, inflammatory status, gut microbiota, systemic inflammation, and metabolism, rather than the specific effects of each compound. I also discuss the possible mechanisms by which phytobiotics contribute to growth promotion in chickens.

Risk Assessment of Growth Hormones and Antimicrobial Residues in Meat

  • Jeong, Sang-Hee;Kang, Dae-Jin;Lim, Myung-Woon;Kang, Chang-Soo;Sung, Ha-Jung
    • Toxicological Research
    • /
    • v.26 no.4
    • /
    • pp.301-313
    • /
    • 2010
  • Growth promoters including hormonal substances and antibiotics are used legally and illegally in food producing animals for the growth promotion of livestock animals. Hormonal substances still under debate in terms of their human health impacts are estradiol-$17\beta$, progesterone, testosterone, zeranol, trenbolone, and melengestrol acetate (MGA). Many of the risk assessment results of natural steroid hormones have presented negligible impacts when they are used under good veterinary practices. For synthetic hormonelike substances, ADIs and MRLs have been established for food safety along with the approval of animal treatment. Small amounts of antibiotics added to feedstuff present growth promotion effects via the prevention of infectious diseases at doses lower than therapeutic dose. The induction of antimicrobial resistant bacteria and the disruption of normal human intestinal flora are major concerns in terms of human health impact. Regulatory guidance such as ADIs and MRLs fully reflect the impact on human gastrointestinal microflora. However, before deciding on any risk management options, risk assessments of antimicrobial resistance require large-scale evidence regarding the relationship between antimicrobial use in food-producing animals and the occurrence of antimicrobial resistance in human pathogens. In this article, the risk profiles of hormonal and antibacterial growth promoters are provided based on recent toxicity and human exposure information, and recommendations for risk management to prevent human health impacts by the use of growth promoters are also presented.