• 제목/요약/키워드: Intestinal Growth

검색결과 601건 처리시간 0.028초

닭의 괴사성 장염에 대한 병리학적 연구 (Pathological changes on naturally occuring necrotic enteritis in chicken)

  • 김홍집;강문일;정운익
    • 대한수의학회지
    • /
    • 제37권1호
    • /
    • pp.161-166
    • /
    • 1997
  • From January of 1991 to December of 1992, 42 chickens collected from 21 poultry farms and also diagnosed as necrotic enteritis(NE) was examined clinical signs, gross and histopathological findings. Main clinical signs were characterized by decreased appetite, mild to severe depression, reductance to move, ruffled feathers, greenish to yellow-browinish diarrhea sometimes including blood. As progressed, diseased chickens showed feces mixed with necrotic debris which detached from the intestinal mucosa and mostly resulted in the death. In chronic cases, there were dirty feathers around cloaca due to diarrhea and notably retarded growth. Principle gross lesions were usually confined to the jejunum and ileum, especially toward the lower part of Meckel's diverticulum. The part of small intestine was frequently distended with gas, and also showed mucosal congestion and hemorrhages with varying degrees. Sometimes, the intestinal mucosa was thickened, and also covered with fibronecrotic psuedomembrane. In addition, there were focal necrosis and severely multifocal ulcreation in the mucosa of small intestine. Major histopathological findings included villous necrosis and erosion of the small intestine covering with lots of bacterial colonies, inflammatory cell infiltration in the lamina propria, and dilatation and hyperplasia of crypts. Luminal exudate contained bacterial colonies, fibrin, erythrocytes, and desquamated epithelium. Thirteen(61.9%) out of 21 NE-occurring farms were complicated with intestinal coccidiosis.

  • PDF

Pathophysiology and protective approaches of gut injury in critical illness

  • Jung, Chang Yeon;Bae, Jung Min
    • Journal of Yeungnam Medical Science
    • /
    • 제38권1호
    • /
    • pp.27-33
    • /
    • 2021
  • The gut is a complex organ that has played an important role in digestion, absorption, endocrine functions, and immunity. The gut mucosal barriers consist of the immunologic barrier and nonimmunologic barrier. During critical illnesses, the gut is susceptible to injury due to the induction of intestinal hyperpermeability. Gut hyperpermeability and barrier dysfunction may lead to systemic inflammatory response syndrome. Additionally, gut microbiota are altered during critical illnesses. The etiology of such microbiome alterations in critical illnesses is multifactorial. The interaction or systemic host defense modulation between distant organs and the gut microbiome is increasingly studied in disease research. No treatment modality exists to significantly enhance the gut epithelial integrity, permeability, or mucus layer in critically ill patients. However, multiple helpful approaches including clinical and preclinical strategies exist. Enteral nutrition is associated with an increased mucosal barrier in animal and human studies. The trophic effects of enteral nutrition might help to maintain the intestinal physiology, prevent atrophy of gut villi, reduce intestinal permeability, and protect against ischemia-reperfusion injury. The microbiome approach such as the use of probiotics, fecal microbial transplantation, and selective decontamination of the digestive tract has been suggested. However, its evidence does not have a high quality. To promote rapid hypertrophy of the small bowel, various factors have been reported, including the epidermal growth factor, membrane permeant inhibitor of myosin light chain kinase, mucus surrogate, pharmacologic vagus nerve agonist, immune-enhancing diet, and glucagon-like peptide-2 as preclinical strategies. However, the evidence remains unclear.

Management and control of coccidiosis in poultry - A review

  • Rafiq Ahmad;Yu-Hsiang Yu;Kuo-Feng Hua;Wei-Jung Chen;Daniel Zaborski;Andrzej Dybus;Felix Shih-Hsiang Hsiao;Yeong-Hsiang Cheng
    • Animal Bioscience
    • /
    • 제37권1호
    • /
    • pp.1-15
    • /
    • 2024
  • Poultry coccidiosis is an intestinal infection caused by an intracellular parasitic protozoan of the genus Eimeria. Coccidia-induced gastrointestinal inflammation results in large economic losses, hence finding methods to decrease its prevalence is critical for industry participants and academic researchers. It has been demonstrated that coccidiosis can be effectively controlled and managed by employing anticoccidial chemical compounds. However, as a result of their extensive use, anticoccidial drug resistance in Eimeria species has raised concerns. Phytochemical/herbal medicines (Artemisia annua, Bidens pilosa, and garlic) seem to be a promising strategy for preventing coccidiosis, in accordance with the "anticoccidial chemical-free" standards. The impact of herbal supplements on poultry coccidiosis is based on the reduction of oocyst output by preventing the proliferation and growth of Eimeria species in chicken gastrointestinal tissues and lowering intestinal permeability via increased epithelial turnover. This review provides a thorough up-to-date assessment of the state of the art and technologies in the prevention and treatment of coccidiosis in chickens, including the most used phytochemical medications, their mode of action, and the applicable legal framework in the European Union.

Metabolic, Osmoregulatory and Nutritional Functions of Betaine in Monogastric Animals

  • Ratriyanto, A.;Mosenthin, R.;Bauer, E.;Eklund, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권10호
    • /
    • pp.1461-1476
    • /
    • 2009
  • This review focuses on the metabolic and osmoregulatory functions of betaine and its impact on nutrient digestibility and performance in pigs and poultry. Betaine is the trimethyl derivative of the amino acid glycine, and is present in plant and animal tissue. It has been shown to play an important role in osmoregulation of plants, bacteria and marine organisms. Due to its chemical structure, betaine exerts a number of functions both at the gastrointestinal and metabolic level. As a methyl group donor, betaine is involved in transmethylation reactions and donates its labile methyl group for the synthesis of several metabolically active substances such as creatine and carnitine. Therefore, supplementation of betaine may reduce the requirement for other methyl group donors such as methionine and choline. Beneficial effects on intestinal cells and intestinal microbes have been reported following betaine supplementation to diets for pigs and poultry, which have been attributed to the osmotic properties of betaine. Furthermore, betaine potentially enhances the digestibility of specific nutrients, in particular fiber and minerals. Moreover, at the metabolic level, betaine is involved in protein and energy metabolism. Growth trials revealed positive effects of supplemental betaine on growth performance in pigs and poultry, and there is evidence that betaine acts as a carcass modifier by reducing the carcass fat content. In conclusion, due to its various metabolic and osmoregulatory functions, betaine plays an important role in the nutrition of monogastric animals.

Effects of Levels of Crude Fiber on Growth Performances and Intestinal Carbohydrases of Domestic Goslings

  • Hsu, J.C.;Chen, L.I.;Yu, B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권10호
    • /
    • pp.1450-1454
    • /
    • 2000
  • This study was conducted to examine the effects of dietary crude fiber levels on the growth and intestinal carbohydrases of goslings. Thirty-two, 2 week old female White Roman goslings were divided into four groups of 4 goslings with 2 replicates. Diets were isocaloric and isonitrogenous, containing 40, 80, 120 or 160 g/kg crude fiber. At the end of the 4 weeks of the experimental period, all goslings were sacrificed and the carbohydrases activities were measured. Feed intake was significantly higher in the 120 and 160 g/kg crude fiber groups over that in the 40 and 80 g/kg groups (p<0.05). The average daily gosling weight gain significantly increased with increasing crude fiber levels from 40 to 120 g/kg. However, both the daily gain and feed conversion of the 160 g/kg crude fiber diet group decreased significantly. Amylase, maltase and ${\alpha}-glucosidase$ activities in the duodenum significantly decreased as the dietary crude fiber level increased. The maltase and ${\alpha}-glucosidase$ activities in the jejunum-ileum showed a similar trend with those in the duodenum. By increasing the levels of crude fiber, cellulase activity in the caecum content significantly increased. There was, however, an adverse effect on the amylase activity.

Enzymatic Hydrolysis of Korean Ginseng Starch and Characteristics of Produced Maltooligosaccharides

  • Kim, Na-Mi;Lee, Jong-Soo;Lee, Byung-H.
    • Journal of Ginseng Research
    • /
    • 제24권1호
    • /
    • pp.41-45
    • /
    • 2000
  • 인삼전분으로부터 기능성 말토올리고당을 생산하기 위하여 인삼전분에 대한 말토 올리고당 생산 최적조건을 검토하고 이들을 정제 한 후 물리화학적 특성과 장내 유용 세균에 대한 생육효과를 조사하였다. Amano-A amylase를 사용하였을 때 glucose가 4개 이상 결합된 말토 올리고당이 많이 생성되어 최적 효소로 선정하였고, 이 효소를 이용한 말토 올리고당 생산 최적조건은 인삼전분 10%, 효소 첨가 농도 50 unit/g 전분 과 반응시간 24시간이었다. 인삼전분을 효소분해하여 생산하고 carbon-celite로 정제한 말토올리고당의 점도와 보수력은 각각 37.7 cps(20。C)와 110%(75%상대습도)로 설탕에 비하여 높았으며, 감미도는 설탕의 25.6% 이었다. 또한 생산된 말토올리고당은 장내 유용세균인 Biflidobacterium infantis의 생육을 촉진시켰다

  • PDF

Effects of Polyunsaturated Fatty Acids on Intestinal Cell Proliferation

  • Wang, Soo-Gyoung
    • Preventive Nutrition and Food Science
    • /
    • 제4권3호
    • /
    • pp.203-208
    • /
    • 1999
  • The effect of the polyunsaterated fatty acids, linoleic acid(LA), arachidonic acid(AA) and conjugated dienoic linoleic acid(CLA) on IEC-6 cells (rat intestinal cell)proliferation and cell transduction have been determined in vitro. IEC-6 cells proliferation was assessed by cell growth and [3H]-thymidine incroporation analysis. At 10 μM concentration , the proliferationof cells supplemented with AA or LA was significantly higher than that of CLA. [3H]-thymidine uptake showed the same results. LA and AA increased [3H]-thymidine uptake more than CLA. The stimulatory effect of LA or AA was even more pronounced in the presence of IGF. Both cell number analysis and [3H]-thymidine incorporation revealed that IEC-6 cell proliferation was influenced differently by exogenous free fatty acids, in which AA or LA stimulated IEC-6 cell proliferation and CLA inhibited it. Tyorosine phosphorylation provides a key switch to regulate celluar acitivity in response to extracellular stimuli. At 20 μM and 10μM, AA with IGF-1 stimulated protein tyrosine phophorylation in IEC-6 cells, but LA's impact was less than that of AA. CLA and CLA with IGF-1 inhibited protein tyrosine phosphorylation in IEC-6 cells. These results suggest there is a possible correlation between cell proliferation and IGF receptor tyrosine knase activity driven by AA.

  • PDF

Components of human breast milk: from macronutrient to microbiome and microRNA

  • Kim, Su Yeong;Yi, Dae Yong
    • Clinical and Experimental Pediatrics
    • /
    • 제63권8호
    • /
    • pp.301-309
    • /
    • 2020
  • Human breast milk (HBM) is essential for the infant's growth and development right after birth and is an irreplaceable source of nutrition for early human survival. Various infant formulas have many similarities to HBM in many components, but there is no perfect substitute for HBM. Recently, various breast milk components and their roles have been studied according to the development of various analysis techniques. As is already well known, HBM contains about 87%-88% water, and 124-g/L solid components as macronutrients, including about 7% (60-70 g/L) carbohydrates, 1% (8-10 g/L) protein, and 3.8% (35-40 g/L) fat. The composition may vary depending on the environmental factors, including maternal diet. Colostrum is low in fat but high in protein and relatively rich in immuneprotective components. Although HBM contains enough vitamins to ensure normal growth of the infant, vitamins D and K may be insufficient, and the infant may require their supplementation. Growth factors in HBM also serve as various bioactive proteins and peptides on the intestinal tract, vasculature, nervous system, and endocrine system. In the past, HBM of a healthy mother was thought to be sterile. However, several subsequent studies have confirmed the presence of rich and diverse microbial communities in HBM. Some studies suggested that the genera Staphylococcus and Streptococcus may be universally predominant in HBM, but the origin of microbiota still remains controversial. Lastly, milk is the one of most abundant body fluid of microRNAs, which are known to play a role in various functions, such as immunoprotection and developmental programming, through delivering from HBM and absorption by intestinal epithelial cells. In conclusion, HBM is the most important source of nutrition for infants and includes microbiomes and miRNAs for growth, development, and immunity.

Growth Properties and Cholesterol Removal Ability of Electroporated Lactobacillus acidophilus BT 1088

  • Lye, H.S.;Khoo, B.Y.;Karim, A.A.;Rusul, G.;Liong, M.T.
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권7호
    • /
    • pp.981-989
    • /
    • 2012
  • This study aimed to evaluate the effects of electroporation on the cell growth, cholesterol removal, and adherence abilities of L. acidophilus BT 1088 and their subsequent passages. The growth of electroporated parent cells increased (P<0.05) by 4.49-21.25% compared with that of the control. This may be attributed to the alteration of cellular membrane. However, growth of first, second, and third passages of treated cells was comparable with that of the control, which may be attributed to the resealing of transient pores on the cellular membrane. Electroporation also increased (P<0.05) assimilation of cholesterol by treated parent cells (>185.40%) and first passage (>21.72%) compared with that of the control. Meanwhile, incorporation of cholesterol into the cellular membrane was also increased (P<0.05) in the treated parent cells (>108.33%) and first passage (>26.67%), accompanied by increased ratio of cholesterol:phospholipids (C:P) in these passages. Such increased ratio was also supported by increased enrichment of cholesterol in the hydrophilic heads, hydrophobic tails, and the interface regions of the membrane phospholipids of both parent and first passage cells compared with that of the control. However, such traits were not inherited by the subsequent second and third passages. Parent cells also showed decreased intestinal adherence ability (P<0.05; decreased by 1.45%) compared with that of the control, without inheritance by subsequent passages of treated cells. Our data suggest that electoporation could be a potential physical treatment to enhance the cholesterol removal ability of lactobacilli that was inherited by the first passage of treated cells without affecting their intestinal adherence ability.

장내 미생물 개선효과가 있는 약용식물소재 탐색 (Search for Medicinal Plants on Improvable Effect of Intestinal Microflora)

  • 조인숙;한영희;이지영;박경열
    • 한국약용작물학회지
    • /
    • 제15권1호
    • /
    • pp.26-29
    • /
    • 2007
  • 장내미생물 개선에 효과가 있는 약용식물소재들을 탐색하여 정장제품 개발하고자 13종의 식물을 물과 에탄올로 각각 추출하여 농도별로 유해균인 C. perfringens, E. coli와 유익균인 B. longum의 생육에 미치는 영향을 in vitro실험으로 시험한 결과는 아래와 같다. 가. C. perfringens은 민들레와 인진쑥 물 추출물에, 돌나물, 오미자, 민들레, 부추, 생강, 쑥, 인진쑥, 질경이 에탄올추출물에 강하게 생육억제 되었다. 나. E. coli은 돌나물, 오미자 물과 에탄올 추출물에서 강하게 생육억제 되었다. 다. B. longum은 추출용매에 관계없이 생육에는 크게 영향을 주지 않았다. 라. 돌나물과 오미자 에탄올추출물이 유익균에 생육억제 없이, 두 유해균을 억제됨으로서 이들 소재가 정장제품으로의 개발 가능성이 있다고 생각되었다.