Browse > Article
http://dx.doi.org/10.3345/cep.2020.00059

Components of human breast milk: from macronutrient to microbiome and microRNA  

Kim, Su Yeong (Department of Pediatrics, Chung-Ang University Hospital)
Yi, Dae Yong (Department of Pediatrics, Chung-Ang University Hospital)
Publication Information
Clinical and Experimental Pediatrics / v.63, no.8, 2020 , pp. 301-309 More about this Journal
Abstract
Human breast milk (HBM) is essential for the infant's growth and development right after birth and is an irreplaceable source of nutrition for early human survival. Various infant formulas have many similarities to HBM in many components, but there is no perfect substitute for HBM. Recently, various breast milk components and their roles have been studied according to the development of various analysis techniques. As is already well known, HBM contains about 87%-88% water, and 124-g/L solid components as macronutrients, including about 7% (60-70 g/L) carbohydrates, 1% (8-10 g/L) protein, and 3.8% (35-40 g/L) fat. The composition may vary depending on the environmental factors, including maternal diet. Colostrum is low in fat but high in protein and relatively rich in immuneprotective components. Although HBM contains enough vitamins to ensure normal growth of the infant, vitamins D and K may be insufficient, and the infant may require their supplementation. Growth factors in HBM also serve as various bioactive proteins and peptides on the intestinal tract, vasculature, nervous system, and endocrine system. In the past, HBM of a healthy mother was thought to be sterile. However, several subsequent studies have confirmed the presence of rich and diverse microbial communities in HBM. Some studies suggested that the genera Staphylococcus and Streptococcus may be universally predominant in HBM, but the origin of microbiota still remains controversial. Lastly, milk is the one of most abundant body fluid of microRNAs, which are known to play a role in various functions, such as immunoprotection and developmental programming, through delivering from HBM and absorption by intestinal epithelial cells. In conclusion, HBM is the most important source of nutrition for infants and includes microbiomes and miRNAs for growth, development, and immunity.
Keywords
Human milk; Infant; Nutrient; Microbiota; MicroRNA;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Innis SM, King DJ. Trans Fatty acids in human milk are inversely associated with concentrations of essential all-cis n-6 and n-3 fatty acids and determine trans, but not n-6 and n-3, fatty acids in plasma lipids of breast-fed infants. Am J Clin Nutr 1999;70:383-90.   DOI
2 Decsi T. Nutritional relevance of trans isomeric fatty acids in human milk. Acta Paediatr 2003;92:1369-71.   DOI
3 Del Prado M, Villalpando S, Elizondo A, Rodriguez M, Demmelmair H, Koletzko B. Contribution of dietary and newly formed arachidonic acid to human milk lipids in women eating a low-fat diet. Am J Clin Nutr 2001;74:242-7.   DOI
4 Weseler AR, Dirix CE, Bruins MJ, Hornstra G. Dietary arachidonic acid dose-dependency increases with arachidonic acid concetration in human milk. J Nutr 2008;138:2190-7.   DOI
5 Jensen CL, Maude M, Anderson RE, Heird WC. Effect of docosahexaenoic acid supplementation of lactating women on the fatty acid composition of breast milk lipids and maternal and infant plasma phospholipids. Am J Clin Nutr 2000;71(1 Suppl):292S-299S.   DOI
6 Fleith M, Clandinin MT. Dietary PUFA for preterm and term infants: review of clinical studies. Crit Rev Food Sci Nutr 2005;45:205-29.   DOI
7 Perrine CG, Sharma AJ, Jefferds ME, Serdula MK, Scanlon KS. Adherence to vitamin D recommendations among US infants. Pediatrics 2010;125:627-32.   DOI
8 Ministry of Health and Welfare (KR). The Korean Nutrition Society. Dietary reference intakes for Koreans 2015. Sejong (Korea): Ministry of Health and Welfare, 2016.
9 American Academy of Pediatrics Committee on Fetus and Newborn. Controversies concerning vitamin K and the newborn. American Academy of Pediatrics Committee on Fetus and Newborn. Pediatrics 2003;112:191-2.
10 Sneed SM, Zane C, Thomas MR. The effects of ascorbic acid, vitamin B6, vitamin B12, and folic acid supplementation on the breast milk and maternal nutritional status of low socioeconomic lactating women. Am J Clin Nutr 1981;34:1338-46.   DOI
11 Parr RM, DeMaeyer EM, Iyengar VG, Byrne AR, Kirkbright GF, Schoch G, et al. Minor and trace elements in human milk from Guatemala, Hungary, Nigeria, Philippines, Sweden, and Zaire. Results from a WHO/IAEA joint project. Biol Trace Elem Res 1991;29:51-75.   DOI
12 Domellof M, Lonnerdal B, Dewey KG, Cohen RJ, Hernell O. Iron, zinc, and copper concentrations in breast milk are independent of maternal mineral status. Am J Clin Nutr 2004;79:111-5.   DOI
13 Innis SM. Impact of maternal diet on human milk composition and neurological development of infants. Am J Clin Nutr 2014;99:734S-741S   DOI
14 Martin CR, Dasilva DA, Cluette-Brown JE, Dimonda C, Hamill A, Bhutta AQ, et al. Decreased postnatal docsahexaenoic and arachidonic acid blood levels in premature infants are associated with neonatal morbidities. J Pediatr 2011;159:743-9.   DOI
15 de Figueiredo CS, Palhares DB, Melnikov P, Moura AJ, dos Santos SC. Zinc and copper concentrations in human preterm milk. Biol Trace Elem Res 2010;136:1-7.   DOI
16 O'Brien CE, Krebs NF, Westcott JL, Dong F. Relationships among plasma zinc, plasma prolactin, milk transfer, and milk zinc in lactating women. J Hum Lact 2007;23:179-83.   DOI
17 Gabrielli O, Zampini L, Galeazzi T, Padella L, Santoro L, Peila C, et al. Preterm milk oligosaccharides during the first month of lactation. Pediatrics 2011;128:e1520-31.   DOI
18 ESPGHAN Committee on Nutrition, Agostoni C, Braegger C, Decsi T, Kolacek S, Koletzko B, et al. Breast-feeding: a commentary by the ESPGHAN Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2009;49:112-25.   DOI
19 De Leoz ML, Gaerlan SC, Strum JS, Dimapasoc LM, Mirmiran M, Tancredi DJ, et al. Lacto-N-tetraose, fucosylation, and secretor status are highly variable in human milk oligosaccharides from women delivering preterm. J Proteome Res 2012;11:4662-72.   DOI
20 Van Rossum CT, Buchner FL, Hoekstra J. Quantification of health effects of breastfeeding: review of the literature and model simulation. Bilthoven: RIVM; 2006.
21 World Health Organization, United Nations Children's Fund. Global strategy for infant and young child feeding. Geneva: World Health organization; 2003.
22 Ip S, Chung M, Raman G, Chew P, Magula N, DeVine D, et al. Breastfeeding and maternal and infant health outcomes in developed countries. Evid Rep Technol Assess (Full Rep) 2007;153:1-186.
23 Johnston M, Landers S, Noble L, Szucs K, Viehmann L. Breastfeeding and the use of human milk. Pediatrics. 2012;129:e827-41.   DOI
24 Li R, Xia W, Zhang Z, Wu K. S100B protein, brain-derived neurotrophic factor, and glial cell linederived neurotrophic factor in human milk. PloS One 2011;6:e21663.   DOI
25 Donovan SM. Role of human milk components in gastrointestinal development: current knowledge and future NEEDS. J Pediatr 2006:149(suppl 5):S49-61.   DOI
26 Dvorak B, Fituch CC, Williams CS, Hurst NM, Schanler RJ. Increased epidermal growth factor levels in human milk of mothers with extremely premature infants. Pediatr Res 2003;54:15-9.   DOI
27 Rodrigues D, Li A, Nair D, Blennerhassett M. Glial cell line-derived neurotrophic factor is a key neurotrophin in the postnatal enteric nervous system. Neurogastroenterol Motil 2011;23:e44-56.   DOI
28 Fichter M, Klotz M, Hirschberg DL, Waldura B, Schofer O, Ehnert S, et al. Breast milk contains relevant neurotrophic factors and cytokines for enteric nervous system development. Mol Nutr Food Res 2011;55:1592-6.   DOI
29 Li R, Xia W, Zhang A, Wu K. S100B protein, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor in human milk. PloS One 2011'6:e21663.   DOI
30 Gazzolo D, Bruschettini M, Lituania M, Serra G, Santini P, Michetti F. Levels of S100B protein are higher in mature human milk than in colostrum and milk-formulae milks. Clin Nutr 2004;23:23-6.   DOI
31 Milsom SR, Blum WF, Gunn AJ. Temporal changes in insulin-like growth factors I and II and in insulin-like growth factor binding proteins 1, 2, and 3 in human milk. Horm Res 2008; 69:307-1.   DOI
32 Cook DA. Nutrient levels in infant formulas: Technical considerations. J Nutr 1989;119:1773-7.   DOI
33 Vandenplas Y, Berger B, Carnielli VP, Ksiazyk J, Lagstrom H, Sanchez Luna M, et al. Human milk oligosaccharides: 2'-fucosyllactose (2'-FL) and lacto-N-neotetraose (LNnT) in infant formula. Nutrients 2018;10:1161.   DOI
34 Hegar B, Wibowo Y, Basrowi RW, Ranuh RG, Sudarmo SM, Munasir Z, et al. The role of two human milk oligosaccharides, 2'-fucosyllactose and lacto-N-neotetraose, in infant nutrition. Pediatr Gastroenterol Hepatol Nutr 2019;22:330-40.   DOI
35 Koletzko B, Baker S, Cleghorn G, Nete U.F, Gopalan F, Hernall O, et al. Global standard for the composition of infant formula: Recommendations of an ESPGHAN coordinated internation expert group. J Pediatr Gastroenteral Nutr 2005;41:584-99.   DOI
36 Riordan J, Wambach K. Breastfeeding and human lactation. 4th ed. Burlington (NJ): Jones & Bartlett Learning, 2016.
37 Picciano MF. Nutrient composition of human milk. Pediatr Clin North Am 2001;48:53-67.   DOI
38 Prosser CG. Insulin-like growth factors in milk and mammary gland. J Mammary Gland Biol Neoplasia 1996;1:297-306.   DOI
39 Guo M. Human milk biochemistry and infant formula manufacturing technology. Cambridge: Elsevier, 2014.
40 Kunz C, Rodriguez-Palmero M, Koletzko B, Jensen R. Nutritional and biochemical properties of human milk, part I: general aspects, proteins, and carbohydrates. Clin Perinatol 1999;26:307-33.   DOI
41 Ballard O, Morrow AL. Human milk composition: nutrients and bioactive factors. Pediatr Clin North Am 2013;60:49-74.   DOI
42 Martin CR, Ling PR, Blackburn GL. Review of infant feeding: key features of breast milk and infant formula. Nutrients 2016;8:279.   DOI
43 Kling PJ, Taing KM, Dvorak B, Woodward SS, Philipps AF. Insulin-like growth factor-I stimulates erythropoiesis when administered enterally. Growth Factors 2006;24:218-23.   DOI
44 Elmlinger MW, Hochhaus F, Loui A, Frommer KW, Obladen M, Ranke MB. Insulin-like growth factors and binding proteins in early milk from mothers of preterm and term infants. Horm Res 2007;68:124-31.   DOI
45 Philipps AF, Kling PJ, Grille JG, Dvorak B. Intestinal transport of insulinlike growth factor-I (igf-I) in the suckling rat. J Pediatr Gastroenterol Nutr 2002;35:539-44.   DOI
46 Philipps AF, Dvorak B, Kling PJ, Grille JG, Koldovsky O. Absorption of milk-borne insulin-like growth factor-I into portal blood of sucklin rats. J Pediatr Gastroenterol Nutr 2000;31:128-35.   DOI
47 DiBiasie A. Evidence-based review of retinopathy of prematurity prevenion in VLBW and ELBW Infants. Neonat Network 2006;25:393-403.   DOI
48 Loui A, Eilers E, Strauss E, Pohl-Schickinger A, Obladen M, Koehne P. Vascular endothelial growth factor (VEGF) and soluble VEGF Receptor 1 (Sflt-1) levels in early and mature human milk from mothers of preterm versus term infants. J Hum Lact 2012;28:522-8.   DOI
49 Soubasi V, Kremenopoulos G, Diamanti E, Tsantali C, Sarafidis K, Tsakiris D. Follow-up of very low birth weight infants after erythropoietin treatment to prevent anemia of prematurity. J Pediatr 1995;127:291-7.   DOI
50 Lonnerdal, B. Preclinical assessment of infant formula. Am Nutr Metab 2012;60:196-9.   DOI
51 Underwood MA. Human milk for the premature infant. Pediatr Clin North Am 2013;60:189-207.   DOI
52 Kim MH, Shim KS, Yi DY, Lim IS, Chae SA, Yun SW, et al. Macronutrient analysis of human milk according to storage and processing in Korean mother. Pediatr Gastroenterol Hepatol Nutr 2019;22:262-9.   DOI
53 Chang YC, Chen CH, Lin MC. The macronutrients in human milk change after storage in various containers. Pediatr Neonatol 2012;53:205-9.   DOI
54 Flint HJ. The impact of nutrition on the human microbiome. Nutr Rev 2012;70 Suppl 1:S10-3.   DOI
55 Brownawell AM, Caers W, Gibson GR, Kendall CW, Lewis KD, Ringel Y, et al. Prebiotics and the health benefits of fiber: current regulatory status, future research, and goals. J Nutr 2012;142:962-74.   DOI
56 Hester SN, Hustead DS, Mackey AD, Singhal A, Marriage BJ. Is the macronutrient intake of formula-fed infants greater than breast-fed infants in early infancy? J Nutr Metab 2012;2012:891201.   DOI
57 Thurl S, Munzert M, Boehm G, Matthews C, Stahl B. Systematic review of the concentrations of oligosaccharides in human milk. Nutr Rev 2017;75:920-33.   DOI
58 Pasha YZ, Ahmadpour-Kacho M, Hajiahmadi M, Hosseini M. Enteral erythropoietin increases plasma erythropoietin level in preterm infants: a randomized controlled trial. Indian Pediatr 2008;45:25-8.
59 Claud EC, Savidge T, Walker WA. Modulation of human intestinal epithelial cell IL-8 secretion by human milk factors. Pediatr Res 2003;53:419-25.   DOI
60 Arthur PG, Kent JC, Hartmann PE. Metabolites of lactose synthesis in milk from women during established lactation. J Pediatr Gastroenterol Nutr 1991;13:260-6.   DOI
61 Andreas NJ, Kampmann B, Mehring Le-Doare K. Human breast milk: a review on its composition and bioactivity. Early Hum Dev 2015;91:629-35.   DOI
62 Martin R, Langa S, Reviriego C, Jiminez E, Marin ML, Xaus J, et al. Human milk is a source of lactic acid bacteria for the infant gut. J Pediatr 2003;143:754-8.   DOI
63 Newburg DS, Woo JG, Morrow AL. Characteristics and potential functions of human milk adiponectin. J Pediatr 2010;156:S41-6.   DOI
64 Martin LJ, Woo JG, Geraghty SR, Altaye M, Davidson BS, Banach W, et al. Adiponectin is present in human milk and is associated with maternal factors. Am J Clin Nutr 2006;83:1106-11.   DOI
65 Civardi E, Garofoli F, Tzialla C, Paolillo P, Bollani L, Stronati M. Microorganisms in human milk: lights and shadows. J Matern Fetal Neonatal Med 2013;26 Suppl 2:30-4.   DOI
66 Heikkila MP, Saris PE. Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J Appl Microbiol 2003;95:471-8.   DOI
67 Collado MC, Delgado S, Maldonado A, Rodriguez JM. Assessment of the bacterial diversity of breast milk of healthy women by quantitative realtime PCR. Lett Appl Microbiol 2009;48:523-8.   DOI
68 Martin R, Jimenez E, Heilig H, Fernandez L, Marin ML, Zoetendal EG, et al. Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl Environ Microbiol 2009;75:965-9.   DOI
69 Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J 2011;5:220-30.   DOI
70 Bode, L. Human milk oligosaccharides: every baby needs a sugar mama. Glycobiology 2012;22:1147-2.   DOI
71 Plaza-Diaz J, Fontana L, Gil A. Human milk oligosaccharides and immune system development. Nutrients 2018;10(8):1038.   DOI
72 Gyorgy P, Norris RF, Rose CS. Bifidus factor. I. A variant of Lactobacillus bifidus requiring a special growth factor. Arch Biochem Biophys 1954;48:193-201.   DOI
73 Ward RE, Ninonuevo M, Mills DA, Lebrilla CB, German JB. In vitro fermentation of breast milk oligosaccharides by Bifidobacterium infantis and Lactobacillus gasseri. Appl Environ Microbiol 2006;72:4497-9.   DOI
74 Ward RE, Ninonuevo M, Mills DA, Lebrilla CB, German JB. In vitro fermentability of human milk oligosaccharides by several strains of bifidobacteria. Mol Nutr Food Res 2007;51:1398-405.   DOI
75 Garrido D, Ruiz-Moyano S, Jimenez-Espinoza R, Eom HJ, Block DE, Mills DA. Utilization of galactooligosaccharides by Bifidobacterium longum subsp. infantis isolates. Food Microbiol 2013;33:262-70.   DOI
76 Jimenez E, de Andres J, Manrique M, Pareja-Tobes P, Tobes R, Martinez-Blanch JF, et al. Metagenomic analysis of milk of healthy and mastitissuffering women. J Hum Lact 2015;31:406-15.   DOI
77 Hunt KM, Foster JA, Forney LJ, Schutte UM, Beck DL, Abdo Z, et al. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS One 2011;6:e21313.   DOI
78 Jost T, Lacroix C, Braegger C, Chassard C. Assessment of bacterial diversity in breast milk using culture-dependent and culture-independent approaches. Br J Nutr 2013;110:1253-62.   DOI
79 Fitzstevens JL, Smith KC, Hagadorn JI, Caimano MJ, Matson AP, Brownell EA. Systematic Review of the Human Milk Microbiota. Nutr Clin Pract 2017;32:354-64.   DOI
80 Asnicar F, Manara S, Zolfo M, Truong DT, Scholz M, Armanini F, et al. Studying vertical microbiome transmission from mothers to infants by strain-level metagenomic profiling. mSystems 2017;2:e00164-16.
81 Urbaniak C, Angelini M, Gloor GB, Reid G. Human milk microbiota profiles in relation to birthing method, gestation and infant gender. Microbiome 2016;4:1.   DOI
82 Togo A, Dufour JC, Lagier JC, Dubourg G, Raoult D, Million M. Repertoire of human breast and milk microbiota: a systematic review. Future Microbiol 2019;14:623-41.   DOI
83 Rodriguez JM. The origin of human milk bacteria: is there a bacterial entero-mammary pathway during late pregnancy and lactation? Adv Nutr 2014;5:779-84.   DOI
84 Urbaniak C, Cummins J, Brackstone M, Macklaim JM, Gloor GB, Baban CK, et al. Microbiota of human breast tissue. Appl Environ Microbiol 2014;80:3007-14.   DOI
85 Jost T, Lacroix C, Braegger CP, Rochat F, Chassard C. Vertical motherneonate transfer of maternal gut bacteria via breastfeeding. Environ Microbiol 2014;16:2891-904.   DOI
86 LoCascio RG, Ninonuevo MR, Freeman SL, Sela DA, Grimm R, Lebrilla CB, et al. Glycoprofiling of bifidobacterial consumption of human milk oligosaccharides demonstrates strain specific, preferential consumption of small chain glycans secreted in early human lactation. J Agric Food Chem 2007;55:8914-9.   DOI
87 Harmsen HJ, Wildeboer-Veloo AC, Raangs GC, Wagendorp AA, Klijn N, Bindels JG, et al. Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr 2000;30:61-7.   DOI
88 Liao Y, Weber D, Xu W, Durbin-Johnson BP, Phinney BS, Lonnerdal B. Absolute Quantification of human milk caseins and the whey/casein ratio during the first year of lactation. J Proteome Res 2017;16:4113-21.   DOI
89 Ramsay DT, Kent JC, Owens RA, Hartmann PE. Ultrasound imaging of milk ejection in the breast of lactating women. Pediatrics 2004;113:361-7.   DOI
90 Solis G, de Los Reyes-Gavilan CG, Fernandez N, Margolles A, Gueimonde M. Establishment and development of lactic acid bacteria and bifidobacteria microbiota in breast-milk and the infant gut. Anaerobe 2010;16:307-10.   DOI
91 Donovan SM, Lonnerdal B. Non-protein nitrogen and true protein in infant formulas. Acta Paediatr Scand 1989;78:497-504.   DOI
92 Rudloff S, Kunz C. Protein and nonprotein nitrogen components in human milk, bovine milk, and infant formula: quantitative and qualitative aspects in infant nutrition. J Pediatr Gastroenterol Nutr 1997;24:328-44.   DOI
93 Lonnerdal B, Woodhouse LR, Glazier C. Compartmentalization and quantitation of protein in human milk. J Nutr 1987;117:1385-95.   DOI
94 Lonnerdal B, Lien EL. Nutritional and physiologic significance of alphalactalbumin in infants. Nutr Rev 2003;61:295-305.   DOI
95 Saarela T, Kokkonen J, Koivisto M. Macronutrient and energy contents of human milk fractions during the first six months of lactation. Acta Paediatr 2005;94:1176-81.   DOI
96 Straarup EM, Lauritzen L, Faerk J, Hoy Deceased CE, Michaelsen KF. The stereospecific triacylglycerol structures and Fatty Acid profiles of human milk and infant formulas. J Pediatr Gastroenterol Nutr 2006;42:293-9.   DOI
97 Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009;136:215-33.   DOI
98 Murphy K, Curley D, O'Callaghan TF, O'Shea CA, Dempsey EM, O'Toole PW, et al. The composition of human milk and infant faecal microbiota over the first three months of life: a pilot study. Sci Rep 2017;7:40597.   DOI
99 Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998;391:806-11.   DOI
100 Grunweller A, Hartmann RK. RNA interference as a gene-specific approach for molecular medicine. Curr Med Chem 2005;12:3143-61.   DOI
101 Wang Z. MicroRNA: a matter of life or death. World J Biol Chem 2010;1:41-54.   DOI
102 Kosaka N, Izumi H, Sekine K, Ochiya T. microRNA as a new immuneregulatory agent in breast milk. Silence 2010;1:7.   DOI
103 Alsaweed M, Lai CT, Hartmann PE, Geddes DT, Kakulas F. Human milk miRNAs primarily originate from the mammary gland resulting in unique miRNA profiles of fractionated milk. Sci Rep 2016;6:20680.   DOI
104 Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, et al. The microRNA spectrum in 12 body fluids. Clin Chem 2010;56:1733-41.   DOI
105 Melnik BC, Schmitz G. MicroRNAs: milk's epigenetic regulators. Best Pract Res Clin Endocrinol Metab 2017;31:427-42.   DOI
106 Zhou Q, Li M, Wang X, Li Q, Wang T, Zhu Q, et al. Immune-related microRNAs are abundant in breast milk exosomes. Int J Biol Sci 2012;8:118-23.   DOI
107 Alsaweed M, Hartmann PE, Geddes DT, Kakulas F. MicroRNAs in breastmilk and the lactating breast: potential immunoprotectors and developmental regulators for the infant and the mother. Int J Environ Res Public Health 2015;12:13981-4020.   DOI