Journal of the Korean Society for Aviation and Aeronautics
/
v.20
no.1
/
pp.66-75
/
2012
The purpose of this study is to analyze the effect of intervention variables which may affect the air travel demand for Jeju domestic flights and to anticipate the air travel demand for Jeju domestic flights. The air travel demand forecasts for Jeju domestic flights are conducted through ARIMA-Intervention Model selecting five intervention variables such as 2002 World Cup games, SARS, novel swine-origin influenza A, Yeonpyeongdo bombardment and Japan big earthquake. The result revealed that the risk factor such as the threat of war that is a negative intervention incident and occurred in Korea has the negative impact on the air travel demand due to the response of risk aversion by users. However, when local natural disasters (earthquakes, etc) occurring in neighboring courtiers and global outbreak of an epidemic gave the negligible impact to Korea, negative intervention incident would have a positive impact on air travel demand as a response to find alternative due to rational expectation of air travel customers. Also we realize that a mega-event such as the 2002 Korea-Japan World Cup games reduced the air travel demand in a short-term period unlike the perception in which it will increase the air travel demand and travel demands in the corresponding area.
Kim, Kwan-Hyung;Kim, Han-Soo;Lee, Sung-Duk;Lee, Hyun-Gi;Yoon, Kyoung-Man
Proceedings of the KSR Conference
/
2011.10a
/
pp.1715-1721
/
2011
For an efficient railroad operations the demand forecasting is required. Time series models can quickly forecast the future demand with fewer data. As well as the accuracy of forecasting is excellent compared to other methods. In this study is proposed the intervention ARIMA model for forecasting methods of KTX passenger demand. The intervention ARIMA model may reflect the intervention such as the Kyongbu high-speed rail project second phase. The simple seasonal ARIMA model is predicted to overestimate the KTX passenger demand. However, intervention ARIMA model is predicted the reasonable results. The KTX passenger demands were predicted to be a week units separated by the weekday and weekend.
Journal of Korean Society of Industrial and Systems Engineering
/
v.39
no.1
/
pp.25-30
/
2016
It is critical to forecast the maximum daily and monthly demand for power with as little error as possible for our industry and national economy. In general, long-term forecasting of power demand has been studied from both the consumer's perspective and an econometrics model in the form of a generalized linear model with predictors. Time series techniques are used for short-term forecasting with no predictors as predictors must be predicted prior to forecasting response variables and containing estimation errors during this process is inevitable. In previous researches, seasonal exponential smoothing method, SARMA (Seasonal Auto Regressive Moving Average) with consideration to weekly pattern Neuron-Fuzzy model, SVR (Support Vector Regression) model with predictors explored through machine learning, and K-means clustering technique in the various approaches have been applied to short-term power supply forecasting. In this paper, SARMA and intervention model are fitted to forecast the maximum power load daily, weekly, and monthly by using the empirical data from 2011 through 2013. $ARMA(2,\;1,\;2)(1,\;1,\;1)_7$ and $ARMA(0,\;1,\;1)(1,\;1,\;0)_{12}$ are fitted respectively to the daily and monthly power demand, but the weekly power demand is not fitted by AREA because of unit root series. In our fitted intervention model, the factors of long holidays, summer and winter are significant in the form of indicator function. The SARMA with MAPE (Mean Absolute Percentage Error) of 2.45% and intervention model with MAPE of 2.44% are more efficient than the present seasonal exponential smoothing with MAPE of about 4%. Although the dynamic repression model with the predictors of humidity, temperature, and seasonal dummies was applied to foretaste the daily power demand, it lead to a high MAPE of 3.5% even though it has estimation error of predictors.
This study proposed the intervention ARIMA model as a way to forecast the KTX passenger demand. The second phase of the Gyeongbu high-speed rail project and the financial crisis in 2008 were analyzed in order to determine the effect of time series on the opening of a new line and economic impact. As a result, the financial crisis showed that there is no statistically significant impact, but the second phase of the Gyeongbu high-speed rail project showed that the weekday trips increased about 17,000 trips/day and the weekend trips increased about 26,000 trips/day. This study is meaningful in that the intervention explained the phenomena affecting the time series of KTX trip and analyzed the impact on intervention of time series quantitatively. The developed model can be used to forecast the outline of the overall KTX demand and to validate the KTX O/D forecasting demand.
Hoang, Van Minh;Le, Hong Chung;Kim, Bao Giang;Duong, Minh Duc;Nguyen, Duc Hinh;Vu, Quynh Mai;Nguyen, Manh Cuong;Pham, Duc Manh;Ha, Anh Duc;Yang, Jui-Chen
Asian Pacific Journal of Cancer Prevention
/
v.17
no.sup1
/
pp.85-90
/
2016
Two years after implementation of the graphic health warning intervention in Vietnam, it is very important to evaluate the intervention's potential impact. The objective of this paper was to predict effects of graphic health warnings on cigarette packages, particularly in reducing cigarette demand and smoking-associated deaths in Vietnam. In this study, a discrete choice experiment (DCE) method was used to evaluate the potential impact of graphic tobacco health warnings on smoking demand. To predict the impact of GHWs on reducing premature deaths associated with smoking, we constructed different static models. We adapted the method developed by University of Toronto, Canada and found that GHWs had statistically significant impact on reducing cigarette demand (up to 10.1% through images of lung damage), resulting in an overall decrease of smoking prevalence in Vietnam. We also found that between 428,417- 646,098 premature deaths would be prevented as a result of the GHW intervention. The potential impact of the GHW labels on reducing premature smoking-associated deaths in Vietnam were shown to be stronger among lower socio-economic groups.
Kim, Seon Tae;Kim, Min Su;Park, Sang Beom;Lee, Joon Il
Journal of the Korean Society for Aviation and Aeronautics
/
v.21
no.4
/
pp.77-89
/
2013
The purpose of this study is to anticipate the air travel demands over the period of 164 months, from January 1997 to August 2010 using ARIMA-Intervention modeling on the selected sample data. The sample data is composed of the number of the passengers who in the domestic route for Jeju route. In the analysis work of this study, the past events which are assumed to have affected the demands for the air travel routes to Jeju in different periods were used as the intervention variables. The impacts of such variables were reflected in the presupposed demand. The intervention variables used in this study are, respectively, the World Cup event in 2002 (from May to June), 2003 SARS outbreak (from April to May), Tsunami in January 2005, and the influenza outbreak from October to December 2009. The result of the above mentioned analysis revealed that the negative intervention events, like a global outbreak of an epidemic did have negative impact on the air travel demands in a risk aversion by the users of the aviation services. However, in case of the negative intervention events in limited area, where there are possible substituting destinations for the tourists, the impact was positive in terms of the air travel demands for substituting destinations due to the rational expectation of the users as they searched for other options. Also in this study, it was discovered that there is not a binding correlation between a nation wide mega-event, such as the World Cup games in 2002, and the increased air travel demands over a short-term period.
International journal of advanced smart convergence
/
v.4
no.2
/
pp.103-108
/
2015
The electric utility has the responsibility of reducing the impact of peaks on electricity demand and related costs. Therefore, they have introduced Direct Load Control System (DLCS) to automate the external control of shedding customer load that it controls. Since the number of customer load participating in the DLC program are keep increasing, DLCS operators a re facing difficulty in monitoring and controlling customer load. The existing DLCS needs constant operator intervention, e.g., whenever the load is about to exceed a predefined amount, it needs operator's intervention to control the on/off status of the load. Therefore, DLCS operators need the state-of-the-art DLCS, which can control automatically the on/off status of the customer load without intervention as much as possible. This paper presents an intelligent DLCS using the active database. The proposed DLCS is applying the active database to DLCS which can avoid operator's intervention as much as possible. To demonstrate the validity of the proposed system, variable production rules and intelligent demand controller are presented.
This study proposed a multiple intervention time series model to predict KTX passenger demand. In order to revise the research of Kim and Kim (Korean Society for Railway, 14, 470-476, 2011) considering only the intervention of the second phase of Gyeong-bu before November of 2011, we adopted multiple intervention seasonal ARIMA models to model the time series data with additional interventions which occurred after November of 2011. Through the data analysis, it was confirmed that the effects of various interventions such as Gyeong-bu and Ho-nam 2 phase, outbreak of MERS and national holidays, which affected the KTX transportation demand, are successfully explained and the prediction accuracy could be quite improved significantly.
Journal of the Korean Data and Information Science Society
/
v.22
no.3
/
pp.449-458
/
2011
Illegal waste dumping is one of the major problems that the government agency monitoring water quality has to face. Recently government agency installed COD (chemical oxygen demand) auto-monitering machines in river. In this article we provide an outlier detection algorithm using R based on the time series intervention model that detects some outlier values among those COD time series values generated from an auto-monitering machine. Through this algorithm using R, we can achieve an automatic algorithm that does not need manual intervention in each step, and that can further be used in simulation study.
Journal of the Korean Data and Information Science Society
/
v.27
no.3
/
pp.725-732
/
2016
This study analyzes the number of Jeju-bound tourists according to travellers' purposes. We classify the travellers' purposes into three categories: "Rest and Sightseeing", "Leisure and Sport", and "Conference and Business". To see an impact of MERS outbreak occurred in May 2015 on the number of tourists, we fit seasonal ARIMA-Intervention model to the monthly arrivals data from January 2005 to March 2016. The estimation results show that the number of tourists for "Leisure and Sport" and "Conference and Business" were significantly affected by MERS outbreak whereas arrivals for "Rest and Sightseeing" were little influenced. Using the fitted models, we predict the number of Jeju-bound tourists.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.