• Title/Summary/Keyword: Interpolation Parameter

Search Result 151, Processing Time 0.026 seconds

Terrain Geometry from Monocular Image Sequences

  • McKenzie, Alexander;Vendrovsky, Eugene;Noh, Jun-Yong
    • Journal of Computing Science and Engineering
    • /
    • v.2 no.1
    • /
    • pp.98-108
    • /
    • 2008
  • Terrain reconstruction from images is an ill-posed, yet commonly desired Structure from Motion task when compositing visual effects into live-action photography. These surfaces are required for choreography of a scene, casting physically accurate shadows of CG elements, and occlusions. We present a novel framework for generating the geometry of landscapes from extremely noisy point cloud datasets obtained via limited resolution techniques, particularly optical flow based vision algorithms applied to live-action video plates. Our contribution is a new statistical approach to remove erroneous tracks ('outliers') by employing a unique combination of well established techniques-including Gaussian Mixture Models (GMMs) for robust parameter estimation and Radial Basis Functions (REFs) for scattered data interpolation-to exploit the natural constraints of this problem. Our algorithm offsets the tremendously laborious task of modeling these landscapes by hand, automatically generating a visually consistent, camera position dependent, thin-shell surface mesh within seconds for a typical tracking shot.

TIME REPARAMETRIZATION OF PIECEWISE PYTHAGOREAN-HODOGRAPH $C^1$ HERMITE INTERPOLANTS

  • Kong, Jae-Hoon;Kim, Gwang-Il
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.3_4
    • /
    • pp.381-393
    • /
    • 2012
  • In this paper, we show two ways of the time reparametrization of piecewise Pythagorean-hodograph $C^1$ Hermite interpolants. One is the time reparametrization with no shape change, and the other is that with shape change. We show that the first reparametrization does not depend on the boundary data and that it is uniquely determined by the size of parameter domain, up to the general cases. We empirically show that the second parametrization can cause the change of the shape of interpolant.

A NON-ASYMPTOTIC METHOD FOR SINGULARLY PERTURBED DELAY DIFFERENTIAL EQUATIONS

  • File, Gemechis;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.1_2
    • /
    • pp.39-53
    • /
    • 2014
  • In this paper, a non-asymptotic method is presented for solving singularly perturbed delay differential equations whose solution exhibits a boundary layer behavior. The second order singularly perturbed delay differential equation is replaced by an asymptotically equivalent first order neutral type delay differential equation. Then, Simpson's integration formula and linear interpolation are employed to get three term recurrence relation which is solved easily by Discrete Invariant Imbedding Algorithm. Some numerical examples are given to validate the computational efficiency of the proposed numerical scheme for various values of the delay and perturbation parameters.

A Radial Basis Function Approach to Pattern Recognition and Its Applications

  • Shin, Mi-Young;Park, Chee-Hang
    • ETRI Journal
    • /
    • v.22 no.2
    • /
    • pp.1-10
    • /
    • 2000
  • Pattern recognition is one of the most common problems encountered in engineering and scientific disciplines, which involves developing prediction or classification models from historic data or training samples. This paper introduces a new approach, called the Representational Capability (RC) algorithm, to handle pattern recognition problems using radial basis function (RBF) models. The RC algorithm has been developed based on the mathematical properties of the interpolation and design matrices of RBF models. The model development process based on this algorithm not only yields the best model in the sense of balancing its parsimony and generalization ability, but also provides insights into the design process by employing a design parameter (${\delta}$). We discuss the RC algorithm and its use at length via an illustrative example. In addition, RBF classification models are developed for heart disease diagnosis.

  • PDF

Adaptive Mesh Refinement Procedure for Shear Localization Problems

  • Kim, Hyun-Gyu;Im, Se-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2189-2196
    • /
    • 2006
  • The present work is concerned with the development of a procedure for adaptive computations of shear localization problems. The maximum jump of equivalent strain rates across element boundaries is proposed as a simple error indicator based on interpolation errors, and successfully implemented in the adaptive mesh refinement scheme. The time step is controlled by using a parameter related to the Lipschitz constant, and state variables in target elements for refinements are transferred by $L_2$-projection. Consistent tangent moduli with a proper updating scheme for state variables are used to improve the numerical stability in the formation of shear bands. It is observed that the present adaptive mesh refinement procedure shows an excellent performance in the simulation of shear localization problems.

An Accurate Edge-Based Matching Using Subpixel Edges (서브픽셀 에지를 이용한 정밀한 에지기반 정합)

  • Cho, Tai-Hoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.493-498
    • /
    • 2007
  • In this paper, a 2-dimensional accurate edge-based matching algorithm using subpixel edges is proposed that combines the Generalized Hough Transform(GHT) and the Chamfer matching to complement the weakness of either method. First, the GHT is used to find the approximate object positions and orientations, and then these positions and orientations are used as starting parameter values to find more accurate position and orientation using the Chamfer matching with distance interpolation. Finally, matching accuracy is further refined by using a subpixel algorithm. Testing results demonstrate that greater matching accuracy is achieved using subpixel edges rather than edge pixels.

Angular-spectrum based 3-D HPO digital hologram synthesis (Angular 스펙트럼을 이용한 3차원 HPO 디지틀 홀로그램의 합성)

  • 양훈기;김은수
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.5
    • /
    • pp.67-74
    • /
    • 1997
  • In this paper, we psresent a new scheme to synthetically generate a HPO digital hologram for a three-dimensional image that is modelled as the horizontally stacked two-dimensional images. The proposed method transforms a lightwave field into the angular spectrum of planewaves, which enables this method to use FFT routines, rather than using numerous arithmetic calculations. Hence, this method may be able to not only lead to the dramatically less computation but provide relatively excellent performances due to the phase error-free transformation. We present sampling constraints and implementaton procedure to obtian a hololine for each image and also point out the necessity of interpolation. Simulatioj results are presented to show the comparison with the conventional method in terms of computation time and performances, including the behaviors resulting form the different selection of parameter values to be used in the interpolations.

  • PDF

Text-driven Speech Animation with Emotion Control

  • Chae, Wonseok;Kim, Yejin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3473-3487
    • /
    • 2020
  • In this paper, we present a new approach to creating speech animation with emotional expressions using a small set of example models. To generate realistic facial animation, two example models called key visemes and expressions are used for lip-synchronization and facial expressions, respectively. The key visemes represent lip shapes of phonemes such as vowels and consonants while the key expressions represent basic emotions of a face. Our approach utilizes a text-to-speech (TTS) system to create a phonetic transcript for the speech animation. Based on a phonetic transcript, a sequence of speech animation is synthesized by interpolating the corresponding sequence of key visemes. Using an input parameter vector, the key expressions are blended by a method of scattered data interpolation. During the synthesizing process, an importance-based scheme is introduced to combine both lip-synchronization and facial expressions into one animation sequence in real time (over 120Hz). The proposed approach can be applied to diverse types of digital content and applications that use facial animation with high accuracy (over 90%) in speech recognition.

Multiscale simulation based on kriging based finite element method

  • Sommanawat, Wichain;Kanok-Nukulchai, Worsak
    • Interaction and multiscale mechanics
    • /
    • v.2 no.4
    • /
    • pp.353-374
    • /
    • 2009
  • A new seamless multiscale simulation was developed for coupling the continuum model with its molecular dynamics. Kriging-based Finite Element Method (K-FEM) is employed to model the continuum base of the entire domain, while the molecular dynamics (MD) is confined in a localized domain of interest. In the coupling zone, where the MD domain overlaps the continuum model, the overall Hamiltonian is postulated by contributions from the continuum and the molecular overlays, based on a quartic spline scaling parameter. The displacement compatibility in this coupling zone is then enforced by the Lagrange multiplier technique. A multiple-time-step velocity Verlet algorithm is adopted for its time integration. The validation of the present method is reported through numerical tests of one dimensional atomic lattice. The results reveal that at the continuum/MD interface, the commonly reported spurious waves in the literature are effectively eliminated in this study. In addition, the smoothness of the transition from MD to the continuum can be significantly improved by either increasing the size of the coupling zone or expanding the nodal domain of influence associated with K-FEM.

An assumed-stress hybrid element for modeling of plates with shear deformations on elastic foundation

  • Darilmaz, Kutlu
    • Structural Engineering and Mechanics
    • /
    • v.33 no.5
    • /
    • pp.573-588
    • /
    • 2009
  • In this paper a four-node hybrid stress element is proposed for analysing arbitrarily shaped plates on a two parameter elastic foundation. The element is developed by combining a hybrid plate stress element and a soil element. The formulation is based on Hellinger-Reissner variational principle in which both inter element compatible boundary displacement and equilibrated stress fields for the plate as well as the foundation are chosen separately. This formulation also allows a low order polynomial interpolation functions. Numerical examples are presented to show that the validity and efficiency of the present element for the plate analysis resting on an elastic foundation. In these examples the effect of soil depth, interaction between closed plates on soil parameters, comparison with Winkler hypothesis is investigated.