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TIME REPARAMETRIZATION OF PIECEWISE

PYTHAGOREAN-HODOGRAPH C1 HERMITE

INTERPOLANTS

JAE HOON KONG AND GWANG-IL KIM∗

Abstract. In this paper, we show two ways of the time reparametrization
of piecewise Pythagorean-hodograph C1 Hermite interpolants. One is the
time reparametrization with no shape change, and the other is that with

shape change. We show that the first reparametrization does not depend
on the boundary data and that it is uniquely determined by the size of
parameter domain, up to the general cases. We empirically show that the
second parametrization can cause the change of the shape of interpolant.
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1. Introduction

In the computation of offsets and carnal surfaces, one of the main difficulties
is the irrationality of the normal vector field: Even though the spline curve is
rational, the normal vector might be irrational in general. In 1990, Farouki and
Sakkalis introduced the PH (Pythagorean Hodograph) curve as a solution of this
problem [1]. PH curves are a special class of polynomial curves with polynomial
speed function, guaranteeing polynomial arc length and rational offsets. By this
property of PH curves, they are widely used in a number of applications such as
CNC machining, interpolation of discrete data, and the control of digital motion
along curved paths [2, 3, 4, 5, 6].

Since the first introduction of PH curves, there has been a lot of rigorous
researches for both the planar [7, 8, 9, 10] and spatial cases [11, 12, 13, 14] in
several directions. There also have been substantial progresses not only on the
formal representation of PH curves [1, 15, 16] but also on the application of them
to diverse interpolation problems [3, 9, 10, 17, 18, 19, 20, 21, 22].
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Generally, solving various interpolation problems related to practical appli-
cations, we obtain several interpolants produced by their own specific methods
for the applications. If we have to compare all the possible interpolants of an
interpolation problem, first of all, the interplants must be defined on the same
parameter domain for fair comparison. Especially if the interpolants consist of
consecutive curves with junction points of several types [18, 19, 20], i.e., they are
the Undetermined Junction Point (UJP) interpolants; the interpolants obtained
by the UJP method [20], needless to say, it is obvious. However, when we mainly
concentrate our attention on the shapes of interpolants, we sometimes forget it,
and moreover ignore the important fact that the different parameter domain for
an interpolant means the different motion on it.

In this paper, focussing on the piecewise-connected PH interpolants presented
in [20], we handle this problem: how to make the different parameter domains
of PH interpolants identified. As answers to the problem, we propose two meth-
ods: One is the time parameter reparametrization with no shape change, and
the other is that with shape change. (Note that throughout this paper, we
will call the parameter of curve time.) In addition, we compare all the time-
reparameterized interpolants with the original ones, from the viewpoints of the
shapes of them and the motions on them.

The last of this paper is organized as follows: In Section 2, we introduce
some definitions and two fundamental theorems, which are necessary for further
discussions. In Section 3 and 4, we present two kinds of time reparametrizations
for PH interpolants obtained by the UJP method. In Section 5, we generalize
the results in Section 3 and 4. In Section 6, we conclude our results.

2. Preliminaries

Definition 2.1. Let α(t) = (x(t), y(t)) be a planar polynomial curve. Then the
complex representation of α is defined by x(t) + iy(t).

Note that x(t) + iy(t) is a polynomial with complex coefficients. This means
that we can regard a planar polynomial curve α(t) as a complex polynomial, in
algebraic and integrodifferential computations. This identification provides us
many advantages in handling planar polynomial curves. Throughout this paper,
we will use this representation for planar curves.

Definition 2.2. Let α(t) = x(t) + iy(t) be a planar polynomial curve. Then
α(t) is a PH (Pythagorean Hodograph) curve if and only if there exist a polyno-

mial σ(t) which satisfies x′(t)
2
+ y′(t)

2
= σ(t)2, in the complex representation,

∥α′(t)∥2 = ∥x′(t) + iy′(t)∥2 = σ(t)2.

Algebraically, PH polynomial curves can be completely characterized as fol-
lows.

Theorem 2.1 ([17]). Let α(t) = x(t)+ iy(t) be a planar polynomial curve. Then
α(t) is a PH curve if and only if the roots of the hodograph α′(t) = x′(t)+ i y′(t)
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consist of real roots, complex roots of even multiplicity and pairs of conjugate
complex roots.

Remark 2.1. A polynomial curve α(t) = x(t) + i y(t) is said to be regular if
∥α′(t)∥ = ∥x′(t)+i y′(t)∥ ≠ 0 for all t. Thus, α(t) is regular if ∥α′(t)∥ has no real
root. If ∥α′(t)∥ has only non-real complex roots of even multiplicity, of which
any two are not conjugate mutually, then α(t) is said to be strongly regular. For
example, a strongly regular PH cubic can be written as

∫
k(t− c)2dt, where c is

a non-real complex number and k is a constant complex number.

In this paper, we will handle several PH interpolants of various types; single
PH interpolants, two-piece PH interpolants, three-piece interpolants, etc.. We
assume that all the pieces of interpolants are strongly regular.

Piecewise PH curves have been used, as the need arises, in some researches [18,
19]. Recently, another method to solve efficiently Hermite interpolation problems
with them, the UJP method, is introduced in [20], with some methodological
variations. By the method, although we can not solve C1 Hermite interpolation
problems with single PH cubics, for a C1 Hermite data, we can construct always
the interpolants which consist of two consecutive PH cubics:

Definition 2.3. Let α1 : [0, 1] → R2 and α2 : [0, 1] → R2 be two continuous
plane curves. A point Q is called the C 1 junction point of α1(t) and α2(t) if
α1(1) = Q = α2(0) and α′

1(1) = α′
2(0).

Theorem 2.2 ([20]). For a given C1 Hermite data H1
C = {P0, P1, V0, V1}, there

generically exist four interpolants, each of which consists of two PH cubics with
a C1 junction point.

The following example shows how the UJP interpolants stated in Theorem
2.2 can be obtained practically for a given C1 Hermite data.

Example 2.3. Consider a C1 Hermite dataH1
C = {0, 5, 1+3i, 1−3i}. Let α1(t)

and α2(t) be PH cubics. Then, by Remark 2.1, we have α1(t) =
1
3k1(t−c1)

3+d1
and α2(t) =

1
3k2(t− c2)

3 + d2. Assume that α1(0) = 0, α2(1) = 5,α′
1(0) = 1+3i

and α′
2(1) = 1 − 3i, with an undetermined C1 junction point Q , so that Q =

α1(1) = α2(0) and α′
1(1) = α′

2(0). Then we obtain

− 1

3
k1c

3
1 + d1 = 0,

1

3
k2(1− c2)

3 + d2 = 5,

1

3
k1(1− c1)

3 + d1 = −1

3
k2c

3
2 + d2 = Q,

k1c
2
1 = 1 + 3i, k2(1− c2)

2 = 1− 3i,

k1(1− c1)
2 = k2c

2
2.

Next, solving this system of equations, as stated in the previous theorem, we can
find four two-piece PH interpolants with a C1 junction point, satisfying H1

C , as
follows;

α1
1(t) =(t+ 1.782t2 − 0.282t3) + (3t− 0.995t2 − 0.337t3) i,
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α1
2(t) =(2.5 + 3.1718t− 0.936t2 − 0.282t3) + (1.668− 2.005t2 + 0.337t3) i;

α2
1(t) =(t+ 3.141t2 − 0.441t3) + (3t− 1.155t2 − 1.095t3) i,

α2
2(t) =(3.700 + 5.959t− 9.020t2 + 4.360t3) + (0.750− 2.595t+ 5.940t2 − 4.095t3) i;

α3
1(t) =(t− 4.060t2 + 4.360t3) + (3t− 6.345t2 + 4.095t3) i,

α3
2(t) =(1.30 + 5.960t− 1.818t2 − 0.441t3) + (0.750 + 2.595t− 4.440t2 + 1.095t3) i;

α4
1(t) =(t− 5.863t2 + 7.363t3) + (3t− 6.505t2 + 3.337t3) i,

α4
2(t) =(2.50 + 11.363t− 16.226t2 + 7.363t3) + (−0.168 + 3.505t2 − 3.337t3) i,

where αj
1 and αj

2 are two consecutive PH cubics which determine one PH inter-
polant for each j = 1, 2, 3, 4. (See Figure 1.)

Figure 1. Four C1 Hermite PH cubic interpolats obtained by
the UJP method for H1

C = {0, 5, 1 + 3i, 1− 3i}.

Note that, even though various piecewise PH interpolants are generated by
several techniques [20], in this paper, we will state our results, giving priority
to two-piece PH cubic interpolants with a C1 junction point and their simple
variations. In the last part of this paper, we will see that our methods can work
for general piecewise PH interpolants.

3. Time reparametrization with no shape change

From now on, we present our main results; time reparametrizations. We first
consider the time reparametrization with no shape change. Before starting our
main, we need some definitions;

Definition 3.1. Let α(t̃) be a planar curve with t̃ ∈ [0, 1], satisfying the bound-
ary conditions; α(0) = p0, α(1) = p1, α

′(0) = v0, and α ′(1) = v1. Then a time
reparametrization of α(t̃) with respect to an interval Iρ = [0, ρ] is defined by a
monotone increasing polynomial t̃ = ϕ(t) where t ∈ Iρ with ϕ(0) = 0, ϕ(ρ) = 1,
d
dtα(ϕ(t))|t=0 = ϕ′(0) · α′(ϕ(0)) = v0 and d

dtα(ϕ(t))|t=ρ = ϕ′(ρ) · α′(ϕ(ρ)) = v1.
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Now, let α(t) be a C1 curve defined on [0, 1
2 ]. Then, by the following lemma,

we can find the special time reparametrization of α(t) uniquely determined by
the size of time domain, which does not depend on the curve α(t).

Lemma 3.1. Let α(t̃) be a regular curve with α(0) = p0, α(1) = p1, α
′(0) = v0,

and α ′(1) = v1. Assume that the time reparametrization t̃ = ϕ(t) of α(t̃) has
degree 3. Then, when n ≥ 2, t̃ = ϕ(t) is uniquely determined with respect to the
interval I 1

n
= [0, 1

n ].

Proof. Let ϕ(t) be a monotone increasing polynomial defined on the interval
[0, 1

n ], with

ϕ(0) = 0, ϕ(
1

n
) = 1, ϕ′(0) = 1, ϕ′(

1

n
) = 1.

Then, since ϕ(0) = 0, ϕ( 1n ) = 1, we can find a polynomial g(t) such that

ϕ(t) = tg(t), where g(
1

n
) = n. (1)

In addition, since ϕ′(0) = 1 and ϕ′( 1n ) = 1, g(t) satisfies the following;

g(0) = 1, (2)

g′(
1

n
) = −n2 + n. (3)

Here, we assume that g(t) is a quadratic polynomial. Then, by (1), (2) and
(3), we obtain

ϕ(t) = 2(n2 − n3)t3 − 3(n− n2)t2 + t. (4)

Next, we check the monotone increasing property of ϕ(t). Note that

ϕ′(t) = 6(n2 − n3)(t− 1

2n
)2 − 3(1− n)

2
.

Since ϕ′(0) = ϕ′( 1n ) = 1 and n2 − n3 < 0 for n ≥ 2, we consequently have
ϕ′(t) > 0 on the interval I 1

n
. This complete the proof. �

Note that, as shown in Eq. (4), the time reparametrization depends only on
the number n. That’s, the time reparametrization is not influenced by any other
boundary data. This means that the time reparametrization does not change
the shape of the original curve but the speed of motion on the curve.

Next, we apply Lemma 3.1 to two-piece PH cubic interpolants generated by
the UJP method.

Theorem 3.2. Let H1
C = {P0, P1, V0, V1} be a C1 Hermite data and let α∗(t) be

a two-piece PH cubic interpolant satisfying H1
C , which consists of two consecutive

PH cubics α1(t) and α2(t) with the standard time domain [0, 1];

α∗(t) =

{
α1(t), t ∈ [0, 1];
α2(t− 1), t ∈ [1, 2].

(5)
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Then, the time-reparameterized curve β∗(t) given by

β∗(t) =

{
α1 ◦ ϕ1(t), t ∈ [0, 1

2 ];
α2 ◦ ϕ2(t), t ∈ [ 12 , 1],

where ϕ1(t) = −8t3 + 6t2 + t and ϕ2(t) = ϕ1(t − 1
2 ), is also a two-piece PH

interpolant satisfying H1
C .

Proof. By Theorem 2.2, there exists four possible two-piece PH cubic inter-
polants satisfying H1

C . Let α∗(t) be one of them.
By Lemma 3.1, we can find the time reparametrizations ϕ1(t) and ϕ2(t) of

α1(t) and α2(t) with respect to the intervals [0, 1
2 ] and [ 12 , 1], as follows; ϕ1(t) =

−8t3 + 6t2 + t and ϕ2(t) = ϕ1(t − 1
2 ). Note that α1 ◦ ϕ1(t) and α2 ◦ ϕ2(t) are

polynomial curves with the time domains [0, 1
2 ] and [ 12 , 1], respectively. Moreover,

they are consecutively connected by the junction point α1 ◦ ϕ1(
1
2 ) = α2 ◦ ϕ2(

1
2 )

with d
dtα1 ◦ ϕ1|t= 1

2
= d

dtα2 ◦ ϕ2|t= 1
2
, Additionally, they satisfy the boundary

conditions; α1 ◦ ϕ1(0) = P0,
d
dtα ◦ ϕ1(t)|t=0 = V0, α2 ◦ ϕ2(1) = P1 and d

dtα ◦
ϕ1(t)|t=1 = V1. This completes the proof. �

Note that α∗(t) and β∗(t) have the same image in R2. Thus, α∗(t) and β∗(t)
represent different motions along the same image curve. We can empirically
confirm this in the following example.

Example 3.3. Let α∗(t) be one of the two-piece PH cubic interpolants intro-
duced in Example 2.3. Then, as shown in the example, there are four possible
pairs of two consecutive PH cubics; αj

1(t) and αj
2(t) (j = 1, 2, 3, 4), such that

α∗(t) =

{
αj
1(t), t ∈ [0, 1];

αj
2(t− 1), t ∈ [1, 2].

Then, by Theorem 3.2, we can obtain four possible time reparametrization of
α∗(t) with respect to the interval [0, 1], as follows:

β∗(t) =

{
αj
1 ◦ ϕ1(t), t ∈ [0, 1

2 ];

αj
2 ◦ ϕ2(t), t ∈ [ 12 , 1],

where ϕ1(t) = −8t3 + 6t2 + t, ϕ2(t) = ϕ1(t− 1
2 ) and j = 1, 2, 3, 4.

α∗(t) and β∗(t) have the same image curve in R2. Thus the practically mean-
ingful difference between them is to be observed only by comparing the motions
created by them on the image curve. Figure 2 shows the comparison of the
motions created by α∗(t) and β∗(t) when j = 1, on the same image curve an-
notated by 1 in Figure 1. In the figure, we clearly observe that, at the same
moment t, α∗(t) and β∗(t) assign different positions on the image curve. This
means that α∗(t) and β∗(t) represent two motions with different speed on the
same trajectory.
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Figure 2. The comparison of the motions along the inter-
polants α∗(t) and β∗(t), which are denoted respectively by small
boxes and stars, on the same image curve when j = 1.

4. Time reparametrization with shape change

In this section, we introduce, using ϕ(t) = nt, the second type parameter
reparametrization, i.e., the time reparametrization with shape change. We first
consider the following: Let H1

C = {P0, P1, V0, V1} be a C1 Hermite data and
let α(t) be an interpolant for H1

C with the general parameter domain. Here, if
we reparametrize the time variable of α(t) by ϕ(t) = nt, even though we can
transform the time domain of α(t) into the target time domain I 1

n
= [0, 1

n ],

the time-reparametrized curve α ◦ ϕ(t) can not satisfy H1
C but the new C1 Her-

mite data H1
C
∗
= {P0, P1, nV0, nV1}. This means that, if we use ϕ(t) for time

reparametrization, different from the previous one, we need to modify something
more. The following theorem shows what we need.

Theorem 4.1. Let H1
C = {P0, P1, V0, V1} be a C1 Hermite data and let α∗(t)

be a two-piece PH cubic interpolant satisfying H1
C
∗
= {P0, P1,

1
2V0,

1
2V1}, which

consists of two consecutive PH cubics α1(t) and α2(t) with the standard time
domain [0, 1];

α∗(t) =

{
α1(t), t ∈ [0, 1];
α2(t− 1), t ∈ [1, 2].

(6)

Then, the following time-reparameterized curve β∗(t) is a two-piece PH inter-
polant for H1

C with the general time domain [0, 1];

β∗(t) =

{
α1 ◦ ϕ1(t), t ∈ [0, 1

2 ];
α2 ◦ ϕ2(t), t ∈ [ 12 , 1],

where ϕ1(t) = 2t and ϕ2(t) = 2t− 1.

Proof. Note that

β∗(0) = α1(0) = P0, β∗(1) = α2(1) = P1,
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β∗
′(0) = ϕ′

1(0) · α′
1(0) = 2 · 1

2
· V0 = V0,

β∗
′(1) = ϕ′

2(1) · α′
2(1) = 2 · 1

2
· V1 = V1,

β∗(
1

2
) = α1(1) = α2(0), α

′
1(1) = α′

2(0).

Thus β∗(t) is a two-piece PH cubic interpolant for H1
C with the general time

domain [0, 1]. �

Remark 4.1. Note that, at the first step in the second time reparametrization,
we modify the given Hermite data. So, applying the UJP method to this modified
data, we obtain new interpolants, which are different from the ones satisfying the
original data. This means that, even though we can modify the new interpolants,
by the time reparametrization, to satisfy the original data, their shapes must be
different from the original ones. (See Figure 4 in the following example.)

Example 4.2. Consider again the C1 Hermite data, H1
C = {0, 5, 1+3i, 1−3i},

given in Example 2.3 and let H1
C
∗
be the new C1 Hermite data obtained by

reducing the terminal speeds of H1
C by half, i.e., H1

C
∗
= {0, 5, 1+3i

2 , 1−3i
2 }.

Here, applying the UJP method to H1
C
∗
, we can obtain four new C1 Hermite

interpolants satisfying H1
C
∗
, which consist of two consecutive PH cubic curves

αj
1(t) and αj

2(t) for j = 1, 2, 3, 4, as follows:

α1
1(t) =(t+ 6.913t2 + 2.174t3) + (3t+ 0.424t2 − 4.566t3) i,

α1
2(t) =(2.500 + 9.543t− 10.174t2 + 2.174t3) + (1.035− 6.424t2 + 4.566t3) i;

α2
1(t) =(t+ 9.772t2 + 3.583t3) + (3t+ 0.206t2 − 9.411t3) i,

α2
2(t) =(3.391 + 13.459t− 36.529t2 + 32.092t3) + (0.375− 3.853t+ 16.911t2 − 21.411t3) i;

α3
1(t) =(t− 11.610t2 + 32.092t3) + (3t− 15.206t2 + 21.411t3) i,

α3
2(t) =(1.609 + 13.459t− 15.147t2 + 3.583t3) + (0.375 + 3.853t− 13.911t2 + 9.411t3) i;

α4
1(t) =(t− 15.075t2 + 46.151t3) + (3t− 15.424t2 + 16.566t3) i,

α4
2(t) =(2.500 + 20.538t− 54.151t2 + 46.151t3) + (−0.285 + 9.424t2 − 16.566t3) i.

(See Figure 3.)
Next, we reparametrize the new interpolants by the time reparametrization

functions ϕ1(t) = 2t and ϕ2(t) = 2t − 1, so that the four new curves βj
∗(t)

(j = 1, 2, 3, 4) given by

βj
∗(t) =

{
αj
1 ◦ ϕ1(t), t ∈ [0, 1

2 ];

αj
2 ◦ ϕ2(t), t ∈ [ 12 , 1]

satisfy H1
C . Thus they are new two-piece PH interpolants, with the general time

domain [0, 1], satisfyingH1
C . Especially, we should pay attention to the fact that,

since we change the terminal speeds of H1
C in the first step, the new interpolants

have shapes different from the old ones obtained only by the UJP method. (See
Figure 4.)
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Figure 3. Four C1 Hermite PH interpolats obtained by the
second time reparametrization for the same C1 Hermite data
H1

C in Example 2.3.

Figure 4. The change of the shape of interpolnant by the
second time reparametrization: (a) shows the interpolant ob-
tained by the original UJP method, which is annotated by 1
in Figure 1. (b) shows the interpolant obtained by the second
time reparametrization, which is annotated by 1 in Figure 3.

5. Generalization of the time reparametrizations

Now, in this section, we consider the time reparametrization for several piece
PH C1 Hermite interpolants, i.e., the generalized version of our previous results.
Let H1

C = {P0, P1, V0, V1} be a C1 Hermite data and let α∗(t) be a C1 Hermite
interpolant satisfying H1

C , which consists of n consecutive PH curves αi(t) where
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1 ≤ i ≤ n;

α∗(t) =



α1(t), t ∈ [0, 1];
...

...
αi(t− i+ 1), t ∈ [i− 1, i];
...

...
αn(t− n+ 1), t ∈ [n− 1, n],

(7)

with n−1 consecutive C1 junction points α1(1), · · · , αi(1), · · · , αn−1(1). Then
we have the following theorems:

Theorem 5.1. Let H1
C = {P0, P1, V0, V1} be a given C1 Hermite data and let

α∗(t) be an n-piece PH C1 Hermite interpolant satisfying H1
C , which is given by

Eq. (7). Then the time-reparameterized interpolant β∗(t) given by

β∗(t) =



α1 ◦ ϕ1(t), t ∈ [0, 1
n ];

...
...

αi ◦ ϕi(t), t ∈ [ i−1
n , i

n ];
...

...
αn ◦ ϕn(t), t ∈ [n−1

n , 1],

where ϕ1(t) = 2(n2−n3)t3−3(n−n2)t2+t and ϕi(t) = ϕ1(t− i−1
n ) for 2 ≤ i ≤ n,

is also an n-piece PH C1 Hermite interpolant satisfying H1
C .

Proof. Note that, since

α∗(0) = α1(0) = P0, α∗(n) = αn(1) = P1;

α∗
′(0) = α′

1(0) = V0, α
∗′(n) = α′

n(1) = V1;

α∗(i) = αi(1) = αi+1(0), α∗′(i) = α′
i(1) = α′

i+1(0) for 1 ≤ i ≤ n− 1,

we have

β∗(0) = α1(ϕ1(0)) = P0, β∗(1) = αn(ϕn(1)) = P1,

β∗
′(0) = ϕ′

1(0) · α′
1(0) = 1 · V0 = V0,

β∗
′(1) = ϕ′

n(1) · α′
n(n) = 1 · V1 = V1;

β∗(
i

n
) = αi(ϕi(

i

n
)) = αi(ϕ1(

1

n
)) = αi+1(ϕ1(0)) = αi+1(ϕi+1(

i

n
)),

β∗
′(
i

n
) = αi

′(ϕi(
i

n
)) · ϕi

′(
i

n
) = αi

′(ϕ1(
1

n
)) · ϕ1

′(
1

n
)) = αi+1

′(ϕ1(0)) · ϕ1
′(0)

= αi+1
′(ϕi+1(

i

n
)) · ϕi+1

′(
i

n
) for 1 ≤ i ≤ n− 1.

This means that β∗(t) is an n-piece PH interpolant satisfying H1
C , defined on

the general time domain [0, 1], with n− 1 consecutive C1 junction points. �
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Theorem 5.2. Let H1
C = {P0, P1, V0, V1} be a C1 Hermite data and let α∗(t) be

an n-piece C1 Hermite interpolant satisfying H1
C
∗
= {P0, P1,

1
nV0,

1
nV1}, which

is given by Eq. (7). Then the following time-reparameterized curve β∗(t) is an
n-piece PH interpolant for H1

C with the general time domain [0, 1];

β∗(t) =



α1 ◦ ϕ1(t), t ∈ [0, 1
n ];

...
...

αi ◦ ϕi(t), t ∈ [ i−1
n , i

n ];
...

...
αn ◦ ϕn(t), t ∈ [n−1

n , 1],

where ϕi(t) = nt− i+ 1 for 1 ≤ i ≤ n.

Proof. Note that, since

α∗(0) = α1(0) = P0, α∗(n) = αn(1) = P1;

α∗′(0) = α′
1(0) =

V0

n
, α∗′(n) = α′

n(1) =
V1

n
;

α∗(i) = αi(1) = αi+1(0), α∗′(i) = α′
i(1) = α′

i+1(0) for 1 ≤ i ≤ n− 1,

we have

β∗(0) = α1(ϕ1(0)) = P0, β∗(1) = αn(ϕn(1)) = P1;

β∗
′(0) = ϕ′

1(0) · α′
1(0) = n · V0

n
= V0;

β∗
′(1) = ϕ′

n(1) · α′
n(1) = n · V1

n
= V1;

β∗(
i

n
) = αi(ϕi(

i

n
)) = αi(1) = αi+1(0) = αi+1(ϕi+1(

i

n
)),

β∗
′(
i

n
) = ϕi

′(
i

n
) · α′

i(ϕi(
i

n
)) = n · αi

′(1) = n · αi+1
′(0)

= ϕi+1
′(
i

n
) · α′

i+1(ϕi+1(
i

n
)) for 1 ≤ i ≤ n− 1.

Thus β∗(t) is an n-piece PH interpolant satisfying H1
C with n − 1 consecutive

C1 junction points on the general time domain [0, 1]. �
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