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Terrain reconstruction from images is an ill-posed, yet commonly desired Structure from
Motion task when compositing visual effects into live-action photography. These surfaces are
required for choreography of a scene, casting physically accurate shadows of CG elements, and
occlusions. We present a novel framework for generating the geometry of landscapes from
extremely noisy point cloud datasets obtained via limited resolution techniques, particularly
optical flow based vision algorithms applied to live-action video plates. Our contribution is a
new statistical approach to remove erroneous tracks (‘outliers’) by employing a unique
combination of well established techniques—including Gaussian Mixture Models (GMMs) for
robust parameter estimation and Radial Basis Functions (RBFs) for scattered data inter-
polation—to exploit the natural constraints of this problem. Our algorithm offsets the trem-
endously laborious task of modeling these landscapes by hand, automatically generating a
visually consistent, camera position dependent, thin-shell surface mesh within seconds for a
typical tracking shot.

Categories and Subject Descriptors: 1.4 [Image Processing and Computer Vision|: Scene
Analysis - Surface Fitting.

Additional Key Words and Phrases: Radial Basis Function, Gaussian Mixture Model.

1. INTRODUCTION

Building a 3D representation of a filming location is a crucial step in the visual effects
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Fig. 1. Battle scenes from film “The Chronicles of Narnia: The Lion, the Witch, and the
Wardrobe”. In these visual effects sequences, the live-action photography plate ( Left) is used as
input to our novel, entirely automated landscape generation pipeline. An optimal flow tracking
algorithm is applied in combination with a moving Radial Basis Function technique for noise
filtering, in order to create a smooth surface representation (Middle) of the underlying land-
scape. Such terrain modeling is extremely useful in scene choreography and casting physically
accurate shadows of CGI elements, as shown in the final composite ( Right).

pipeline. This geometry is primarily required in the compositing of graphics and
animation into a live-action background, where the bi-directional coupling is empha-
sized: computer generated characters should influence their environment by casting
shadows, while conversely the filmed world should contribute to the appearance of
CGI via partial occlusions and illumination conditions. Fig. 1 illustrates a few scenarios
where we wish to restore the 3D information of a scene in order to convincingly
import computer graphics into the image. Our algorithm is able to recover an
appropriate terrain mesh, using as input just the original video sequence. Such an
approach (acting on very limited input) is commonly demanded in practice, when
high-quality geological survey data or LIDAR scans of the actual filming location
prove difficult to obtain. Traditionally it is common in these circumstances for a
skilled matchmoving artist to spend significant time to create and properly align a
terrain, making any possible automation a very practical pursuit.

The high quality reconstruction of a surface from noisy point samples is a
challenging problem that has received much attention in recent years, primarily due
to advancements in automatic shape acquisition: data output from scanners and
image based techniques is often presented as a large set of points. However unlike
much of the previous work in this area (see Section 2), there is little attention for
reconstructions from severely incomplete and noisy datasets, as we would expect to
extract from the monocular, uncalibrated camera image sequences we consider here.
These datasets are extremely unreliable due to triangulations in R” that cannot be
rejected solely on the basis of stereographic reprojection errors or illuminance infor-
mation alone. Moreover, the dataset sampling is highly nonuniform, and outliers are
arbitrary. Our task is to obtain a final surface that, while not necessarily accurate to
the ground truth topography of the scene, is consistent with the input image
sequence (no ‘sliding” of geometry w.r.t. the images), and could thus be used directly
to composite computer graphics, while maintaining acceptable runtime and memory
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requirements for use in a production environment.

In order to make this daunting problem more manageable, our key insight is to
minimize the degrees of freedom by exploiting a number of unique natural con-
straints to obtain a robust solution. In particular, we claim that natural landscapes
can be represented as a 2D “height function” with respect to the vertical axis because
gravity combined with erosion tends to collapse any overhangs. By a similar argument
we additionally enforce a smoothness constraint, as spectral analysis of these 2D
functions show that the high frequency spectral modes decay very quickly. Starting
with a noisy sampling generated by optical flow, we thereby propose a post filtering
stage to remove outlying points. This is achieved by locally fitting a radial basis
function to the neighborhood of a point to predict its error likelihood, and a Gaussian
mixture model to automatically determine the appropriate error cutoff threshold.
The final step is to use this cleaned dataset in a surface generation method that
captures the many benefits of using RBF's as a scattered data interpolant for the
remaining irregularly sampled dataset.

2. RELATED WORK

A rich history of Structure from Motion literature exists, and in particular our algo-
rithm builds on the successful work of [Fitzgibbon and Zisserman 1998] for robust
camera acquisition and 3D tracking. Surveyless uncalibrated camera tracking (z.e.
no a priori knowledge of 3D locations in the scene) became feasible by capitalizing on
achievements such as optical flow tracking [Barron et al. 1994], statistical analysis
based on RANSAC [Forsyth and Ponce 2003; Hartley and Zisserman 2004], and
structure from motion ideas employing epipolar geometry constraints of the observed
images, as is clearly expressed in [Hartley and Zisserman 2004; Fitzgibbon and
Zisserman 1998]. Elements from all these sources described above are present in the
3D camera tracking system we use in order to obtain the initial point cloud that
serves as input data for the terrain generation algorithm described in Section 4.

This leads us to the adjacent and related field of surface reconstruction, which
aims to generate a manifold watertight mesh with minimal geometric and topological
noise, where input is in the form of a (comparatively) well sampled point set with few
outliers, or outliers with a fairly regular distribution. The first very popular approach
to tackle this problem is based on meshing, commonly employing Delaunay/Voronoi
techniques to create a triangulation that interconnects the entire dataset, and requires
a post-processing step to smooth the resultant geometry and minimize spurious
oscillations. An excellent survey of this general approach to reconstruction can be
found in [Cazals and Giesen 2004]. Alternate approaches are mesh-free methods.
The most successful algorithms directly generate an approximated surface, often as
the level set of an implicit function, for which one can speak of local and global
schemes. A most simple local construction is to individually consider subsets of nearby
points, estimate the tangent plane, and create an implicit function as the signed
distance to the tangent plane of this subset of points [Hoppe et al. 1992]. Some
alternate algorithms require point normals [Kazhdan et al. 2006}, while others
[Hornung and Kobbelt 2006; Schall et al. 2005] do not.
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Global fitting strategies [Samozino et al. 2006; Kolluri et al. 2004] often generate
an implicit function from the sum of polyharmonics (RBFs) centered at the point
samples. Unfortunately, it is typical for radial basis functions to rely on a basis with
global support, requiring the solution to a dense linear system, where the condition
number of this matrix is generally coupled to the size of the dataset, and can thus
cause significant instabilities for large problems. [Carr et al. 2001] addressed this
challenge by introducing the fast multipole method. While the Multi-level Partition
of Unity approach [Ohtake et al. 2003] also elegantly circumvents many issues
plaguing RBFs, like most implicit function based shape representations, it is not
capable of successfully handling objects with boundaries. This is a key motivation in
the design of our new method. Our approach is similar to [Schall et al. 2005}, who
propose a point cloud filtering stage followed by a meshing stage [Amenta et al.
2001], however our algorithm incorporates RBFs for meshing: the tracked data is
segmented into numerous objects of interest, decomposing the point set into several
small problems for which numerical conditioning is quite acceptable, rendering the
multipole method of [Carr et al. 2001] redundant for our needs.

Very recent commercial softwares (e.g. [2d3]) have introduced terrain generation
mto their matchmoving pipeline, however the methods employed are still rudimentary.
For example, it is observed in several matchmoving packages that a terrain is
created by applying a Delaunay triangulation to the 2D projection of the tracked
point cloud onto the base plane. The mesh resolution and shape is thus directly tied
to the number and distribution of tracked points, without regard to possible outliers.
Similarly, most published works in photogrammetry (for land surveying) focus on
out-of-core algorithms for rendering and managing massive datasets (e.g. [Isenburg
et al. 2006; Lindstrom and Pascucci 2002]); not directly relevant in this context.

What follows is a brief mathematical formulation of the approximation problem,
and an outline for a succinct and robust algorithm to clean datasets obtained by
vision algorithms for use in matchmoving applications.

3. BACKGROUND

Given a set of n samples from a real valued 2D “height” function f(z) with values {f;,
oy fa} © R at the locations {, ..., z,} C R? we wish to find a function f (z) that

best approximates f(z). In other words, the optimal function f () minimizes the
least squares error objective

BP) =Y U-F)P (1

Using the RBF method, one selects a function f (z) defined by a linear combination\n
of the basis function ¢ : R™ — R in a way that is expressed by

n

fz) =2 wigllz—z), (2)

i=1
where | - | denotes the standard L* Euclidean norm, and {wy, ..., w,} € R a set of
unknown weights to be solved for such that all f (z;) = f. [Carr et al. 2001] suggests
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various appropriate possibilities of the basis function ¢, and we use the thin-plate
spline ¢(z) = #” log =z that is very effective for our problem, although even a most
trivial function such as @¢(z) = z can also be adequate for fitting the smooth bivariate
terrain height.

4. ALGORITHMIC APPROACH

Interpolation schemes are conceived to minimize an appropriate error objective
function, and one such approach is the RBF method. Because our input samples are
unreliable, our contribution is a new method of pre-processing the point cloud that
results from tracking a video sequence, possibly using the techniques referenced in
Section 2. We describe this filtering algorithm to clean the noisy point cloud, and
finally propose a useful approach to generating the final surface mesh. The filtering
algorithm is a local approach that can be outlined as follows: (1) locally fit a 2D
radial basis function h, to the neighborhood of a vertex ¢ in the initial point cloud P,
(2) quantify the error between the actual height of point i and the estimate based on
our local reconstruction h,, (3) apply a Gaussian mixture model to estimate a dataset
dependent error tolerance, (4) cull erroneous points from the dataset. Finally a RBF
interpolation of the cleaned dataset is used to generate a quad mesh of the terrain.

Position Dependent Logarithmic Sampling: In many situations, a user may
wish to specify an appropriate camera hither and yon distance, in which case any
points outside of this range are culled. More generally, we emphasize points near to
the camera because the visual detail is most important there, and also because
parallax is more predominant closer to the camera, leading to accurate optical flow
tracks. This is achieved by a logarithmic sampling process: a vertex ¢ € P is sampled
“with a probability of 1/log d; where d, is the minimum distance of i to the camera
position, which can be expressed formally as d; = min,, |t — ¢,|, where c,, denotes the
camera position vector at frame m of the image sequence. In other words, we deter-
mine the minimum distance between the tracked vertex i and the camera position
over the entire video, necessary because the camera needn’t remain static. We now
update P to reflect this subsampling of the initial point set.

Fig. 2. Quantification of local errors: the accuracy of vertex 7 is estimated by creating a radial
basis function h; from the neighboring points j € N(¢) and considering the deviation J; = (4, -
hi%s, %,)). The neighborhood N(7) simply contains all points 7 within some g-ball from vertex 7 in

the zzplane.
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Fig. 3. We contrast the surface reconstruction of the mountain top terrain (Left, also see Figure
1): it is first performed without noise filtering of P (Middle), and once again using our RBF/
GMM based filtering algorithm (Right). Notice our method helps to reduce spurious high
frequency modes in the resultant surface.

Quantification of Error: It is necessary to evaluate the remaining points on an
error criterion; errors are first estimated by employing a technique based on local
fitting of radial basis functions. Each vertex i € P is considered in turn by generating
a RBF hz, z)—see Section 3—that intersects all the neighboring points 7 € N(¢) as
smoothly as possible, in order to see how closely the neighborhood N(%) is able to
predict the true surface elevation at vertex 4. The neighborhood N(2) is defined as the
set of closest vertices j to ¢ in the zzbase plane, as depicted. We now evaluate 'z; =
h{1., t,) and quantify the error between the height of i and our local prediction based
on interpolation of N(z) by considering o, = (4, — i, ), please refer to Fig. 2 to clarify
this construction. Note that a non-standard xz-base plane can be specified (e.g.,
when modeling a mountain cliff) by applying a rotation to P ahead of the
aforementioned computations. | |

Rejection of Outliers: For all vertices 1 € P we compute 0,, which defines a
onedimensional signal of errors. It has been observed through empirical testing that
such signal typically follows a Gaussian distribution with mean i = 0 and relatively
low variance 6°. A Gaussian Mixture Model (GMM) code is invoked [Bouman 2005],
based on the classic EM algorithm, to estimate these parameters i and ¢ for the
point cloud under consideration, and finally exclude any vertices that lie further than
20 from y. The remaining points are considered valid optical flow triangulations in
3D, and are used to compute a global RBF function R that defines our final land-
scape. One possible caveat in this setup is in the presence of systematic reprojection
errors. Frequently not one, but two Gaussians are automatically detected by the
GMM system—the Gaussian with larger variance almost always corresponds to the
systematically erroneous data, hence we neglect the entire distribution from conside-
ration, and we proceed with the alternate remaining Gaussian as above, by removing
points further than 20 away. Once again, P is updated, now to exclude outliers.
Figure 3 demonstrates how this outlier rejection improves the reconstruction quality.

Surface Alignment: A high resolution quad mesh is created, with principle axes
aligned with the principle axes of the dataset P (expressed as a matrix X) through
use of Principle Component Analysis (PCA). We compute the covariance matrix C
= (X - _}Z) (X — X)T where X denotes the mean position, and apply an eigen
decomposition D = VCV! to extract the principle direction vectors V. This matrix
can be thought of as a rotation matrix to be applied to X for alignment. The vertices
of the mesh are now modulated in the yaxis according to the global RBF function
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that represents our elevation, in order to obtain a polygonal representation of the
surface. Applying the inverse rotation V™' = V1 completes the alignment.

Point Set Clustering: In generating our final global RBF terrain field, numerical
instabilities (inversion of a singular matrix) restrict the size of our problem domain
to a cloud of approximately |P] = 500, which might seem overly restrictive for longer
tracking shots. In practice, however, this is not the case, as it usually desirable to
generate a separate mesh for each object (hill, boulder, etc) in the scene. To achieve
this, we integrate an automated clustering process into the framework, by the
invocation of the GMM code a second time (as illustrated in Figure 4), now for the
purpose of partitioning the cloud P into several disjoint sub-clusters P, & P such
that U, P, = P and N, P, = 0. As we wish to cluster the data on the xz-plane, we
feed the xz-components of P to the GMM algorithm, which is now given the addi-
tional degree of freedom to determine for itself the optimum number of Gaussians to
use in representing the data, assuming some reasonable upper threshold (by default
we use 10; consult [Bouman 2005] for details). For each extracted sub-cluster of
points, we perform the filtering algorithm outlined above to clean each set P,
individually and then generate one RBF R, per cluster. If we do wish to obtain a
single mesh of the complete scene, a ‘global’ RBEF R can be created by taking
weighted contributions from all of the R, functions, where the weight is dictated by
the probabilistic distance from the evaluation point of the RBF to the centers of each
cluster. An alternate approach is the multipole method [Carr et al. 2001] to bypass
the numerical instabilities and directly generate a RBF from the whole dataset,
although in reality this is usually unnecessary.

- ——

Fig. 4. A Gaussian Mixture Model algorithm is used to estimate the number of normal distri-
- butions (and their parameters 4 and o) of a scattered point set (as shown on the base plane).

5. RESULTS

Generating a RBF requires the solution to a dense linear system, which is performed
by an efficient Cholesky Factorization. Our local RBF method typically requires us
to solve hundreds of such systems, yet our solution is very fast because we enforce a
local support, .e. |[N(z)| £ 25 is already sufficient to provide impressive results. As
highlighted by the supplemental video in addition to Figure 3, the filtering algorithm
1s a highly effective intermediate step for removing spurious oscillations in the final
terrain geometry. Figures 1, 5, and 6 all present various situations in which our
approach was successful in generating a terrain geometry that is very consistent with
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Fig. 5. Additional terrain geometry created with our system for “The Lion, the Witch, and the
Wardrobe”. Landscape meshes arc created from the original plates ( Left) and used to composite
characters and shadows into the scene ( Right). Note that for distinct terrain features in a scene,
the filtering algorithm is applied on the distinct objects independently (Lower Left).

the input sequence. These examples took between 0.5 to 2 minutes of computation
on a 2Ghz Pentium 3 with 512MB RAM.

6. CONCLUSION AND FUTURE WORK

We have presented a new method for robust outlier detection in noisy point cloud
datasets obtained via optical flow of an input image sequence. The algorithm used
locally fit radial basis functions to estimate errors, and a Gaussian mixture model
mechanism to determine an appropriate cutoff threshold. The GMM was also used
for automated clustering of points. The resulting “clean” point samples were used in
a geometry reconstruction step to obtain a final three-dimensional representation of
the photographed terrain. Our approach was successfully employed in several feature
films, most notably ‘The Chronicles of Narnia’, and the recent film “The Kingdom’.

Future work includes extending the approach to handle fully 3-dimensional terrain,
complete with overhangs and other complicated geometries. Such an improvement
requires modification to our quantification of errors, reminiscent of [Hoppe et al.
1992], which may be outlined as follows: (1) locally fit a 3D radial basis function R,
to the neighborhood of a point p, (2) estimate the tangent plane of R, to obtain the
orthogonal normal vector 7, , (3) calculate the error as the distance of p to R, in the
normal direction n,. The GMM error tolerance procedure can then be used as
previously described. Another open question raised by our work is the optimality of
modeling errors in extracted point clouds through a Gaussian distribution. Although

this seems to be highly effective in practice, we cannot positively claim it to be ideal
in all situations.
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Fig. 6. Various additional scenes from the film reconstructed using our algorithm (Left), for use
iting of CGI into the frame ( Right).
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