• 제목/요약/키워드: Interpolation Accuracy

Search Result 455, Processing Time 0.03 seconds

Research into Improvement of Circular-interpolation Accuracy (원호보간정도 향상에 관한 연구)

  • 김태원
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.624-628
    • /
    • 2000
  • The performance of machine tools is qualified by many test procedures given by the national/international standards or respected organisations. Among them, test regarding circular-interpolation accuracy is getting to be one of the important acceptance tests at the production level. Machine tool systems are composed of many mechanical and electronical sub-systems so that it is not easy to improve dynamic performance by examining only one particular part. Instead, overall systematic approach encompassing all the contributing elements is necessary to achieve good results. In this study, measures taken in circular accuracy improvements will be explained case by case.

  • PDF

Accuracy Analysis of DEM by the Interpolation Methods (보간 방법에 따른 DEM 정확도 분석)

  • Kang, Joon-Mook;Yoon, Hee-Cheon;Choi, Sun-Yong
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.341-345
    • /
    • 2010
  • It is known that the accuracy of DEM is related with terrain morphology, sampling density, and interpolation method. However, the theoretical reasons for these correlations have rarely been accounted for so far. This study aimed to verify a theoretical basis that DEM accuracy can be assessed based on approximation theory when we generate a DEM using lots of precise and accurate source data such as digital maps and LIDAR data.

  • PDF

A Study on the Method for Improving the Localization Accuracy using the Magnetic Sensors (자기센서를 이용한 위치추정 정밀도 향상 방안에 관한 연구)

  • Kim, Jungtai;Kim, Moo Sun;Hong, Jae Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.2
    • /
    • pp.133-139
    • /
    • 2014
  • Magnetic Sensors can be employed to localize the unmanned vehicle which is running a predefined path where magnets are embedded for certain spaces. Among various sensor types, sensor arrays of 1-dimensional magnetic sensor have the merit of easy elimination of external magnetic component such as terrestrial magnetism. However, interpolation should be considered in the array sensors in order to increase the precision level because there is a limit in arranging sensors in close interval. We propose the novel interpolation method which can be performed with simple computation and represents the improved accuracy by increasing the linearity of the interaction formula. Demonstration of the linearity and simulation results show the proposed method exhibits the improved accuracy compared to the conventional method.

Study of Spatial and Temporal Accuracy Estimation Related with Mesh Interafce Region on Overlapped Grids (중첩격자계에서 교차영역 구성에 따른 시간/공간 정확도에 관한 연구)

  • Cho K. W.;Kwon J. H.;Lee S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.11a
    • /
    • pp.95-107
    • /
    • 1999
  • The spatial error due to the non-conservative interpolation become first-order when second-order conservative schemes are used, discontinuities are located away from the overlapped regions, and if the length of the overlapped region is not proportional to the grid spacing. Therefore, the solution accuracy is ensured if two domains overlap each other with a fixed grid point and the interpolation is occurred in smooth flow regions. To validate the spatial and temporal accuracy due to the non-conservative interpolation, inviscid and viscous problems are tested.

  • PDF

THE ADAPTIVE WAVELET FOR HIGH ORDER ACCURATE AND EFFICIENT COMPUTATIONAL FLUID DYNAMICS (고차정확도 및 효율적인 전산유체해석을 위한 Adaptive Wavelet)

  • Lee, Do-Hyung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.261-265
    • /
    • 2011
  • An adaptive wavelet transformation method with high order accuracy is proposed to allow efficient and accurate flow computations. While maintaining the original numerical accuracy of a conventional solver, the scheme offers efficient numerical procedure by using only adapted dataset. The main algorithm includes 3rd order wavelet decomposition and thresholding procedure. After the wavelet transformation, 3rd order of spatial and temporal accurate high order interpolation schemes are executed only at the points of the adapted dataset. For the other points, high order of interpolation method is utilized for residual evaluation. This high order interpolation scheme with high order adaptive wavelet transformation was applied to unsteady Euler flow computations. Through these processes, both computational efficiency and numerical accuracy are validated even in case of high order accurate unsteady flow computations.

  • PDF

The Distribution Analysis of PM10 in Seoul Using Spatial Interpolation Methods (공간보간기법에 의한 서울시 미세먼지(PM10)의 분포 분석)

  • Cho, Hong-Lae;Jeong, Jong-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.1
    • /
    • pp.31-39
    • /
    • 2009
  • A lot of data which are used in environment analysis of air pollution have characteristics that are distributed continuously in space. In this point, the collected data value such as precipitation, temperature, altitude, pollution density, PM10 have spatial aspect. When geostatistical data analysis are needed, acquisition of the value in every point is the best way, however, it is impossible because of the costs and time. Therefore, it is necessary to estimate the unknown values at unsampled locations based on observations. In this study, spatial interpolation method such as local trend surface model, IDW(inverse distance weighted), RBF(radial basis function), Kriging were applied to PM10 annual average concentration of Seoul in 2005 and the accuracy was evaluated. For evaluation of interpolation accuracy, range of estimated value, RMSE, average error were analyzed with observation data. The Kriging and RBF methods had the higher accuracy than others.

Effect of orientation, interval size, target location on interpolation estimates on CRT display. (CRT 표시장치에서 내삽 추정치에 대한 방향, 크기, 위치의 효과)

  • 노재호
    • Journal of the Ergonomics Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.35-42
    • /
    • 1990
  • This study is concerned with the accuracy, of error with which subjects can interpolate the location of a target between two graduation markers with 4 orientations and 6 sizes CRT display. Stimuli were graphic images on CRT with a linear, end-markec, ungraduated scales having a target. The location of a target is estimated in units over te range 1-99. Smallest error of estimates was at the near ends and middle of the base-line. The median error was less than 2 units, modal error was 1, and the most error (; 99.7%) was within 10. A proper size to make an minimum error in interpolation exists such that size 400 pixels. Interpolation estimation is shown to be affected by the size, location and interaction (orientation x location, size x location). The accuracy, interpolation performance are discussed in relation to absolute error associated with visual performance.

  • PDF

A Study on the Interpolation of DTM Applying Moving Average and Linear Prediction Method (이동평균법과 선형예측법을 이용한 수치지형의 보간에 관한 연구)

  • 이석찬;조규전;최병길
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.4 no.1
    • /
    • pp.58-71
    • /
    • 1986
  • A Digital Terrain Model (DTM) consists of two components;one is sampling of the terrain imformation, and the other is interpolation. The present study aims at the investigation of the accuracy and efficiency of Moving Average and Linear Prediction interpolation methods by numerical experiment. Basic input data are the elerations in square grid which procured by photogrammetry, and the accuracy of each interpolation is investigated on different grid size, terrain type and pattern of reference points.

  • PDF

Interpolation Technique to Improve the Accuracy of RR-interval in Portable ECG Device (휴대형 심전계 장치의 RR 간격의 정확도 개선을 위한 보간법 개발)

  • Lee, Eun-Mi;Hong, Joo-Hyun;Cha, Eun-Jong;Lee, Tae-Soo
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.4
    • /
    • pp.316-320
    • /
    • 2010
  • HRV(Heart rate variability) analysis parameter is widely used as an index to evaluate the autonomic nervous system and cardiac function. For reliable HRV analysis, we need to acquire the accurate ECG signals. Most of commercially available portable ECG devices have low sampling rate because of low power consumption and small size issues, which make it difficult to measure RR-interval accurately. This study is to improve the accuracy of RR-interval by developing R-wave interpolation technique, based on the morphological characteristics of the QRS complex. When the developed method was applied to ECG obtained at 200 Hz and the results were compared with 1000 Hz reference device, the error range decreased by 1.33 times in sitting and by 2.38 times in cycling exercise. Therefore, the proposed interpolation technique is thought to be useful to improve the accuracy of R-R interval in the portable ECG device with low sampling rate.

Comparative Evaluation of Interpolation Accuracy for $CO_2$ Emission using GIS (GIS를 활용한 이산화탄소 농도 보간 정확도 비교평가)

  • Kim, Jun-Hyun;Choi, Jin-Ho;Kim, Chung-Sil
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.6
    • /
    • pp.647-656
    • /
    • 2010
  • As the $CO_2$ from buildings take up approximately 25% of the total $CO_2$ emission, the need for regulating and managing this emission is urgently required. Thus this study recognizes $CO_2$ emission status for diverse purposes and suggests accurate interpolation method for visualizing $CO_2$ emission as the basic data for regulating and managing $CO_2$ emission by applying IDW, Spline, and Kringing method. Results showed that Gaussian Function application among the Kriging methods had the highest accuracy in its estimations, with 3.049 with RMSE standards. This could be used as the basic data when visualizing $CO_2$ emission status, which is a necessity for many local and federal governments that are to regulate and manage $CO_2$ emission. This study shows that the interpolation is very appropriative method in recognizing $CO_2$ emission characteristics for regional climate change measures.