• Title/Summary/Keyword: Interoperation of simulator

Search Result 12, Processing Time 0.022 seconds

Research of Interopaeration Simulation between War Game Simulator and Communication Effect Simulator using HLA/RTI (HLA/RTI를 이용한 워게임 시뮬레이터와 통신 효과 시뮬레이터의 연동 시뮬레이션 연구)

  • Kim, Deok-Su;Bae, Jang Won;Park, Soo Bum;Kim, Tag Gon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.46-54
    • /
    • 2015
  • Wargame simulators are widely used in the field of defence modeling and simulation. Because of increasing importance of communication effects on the warfare, the war game simulator is also required to reflect communication effects. One way to satisfy the requirement is the interoperation simulation between war game simulator and communication effect simulators. This paper shows the application of interoperation simulation between war game and communication effect simulators using HLA(High-Level Architecture)/RTI(RunTime Infrastructure). The war game simulator mainly deal with the engagement of troops and the troops communicate each other at the mission execution level. In the other hand, The communication effect simulator perform communication actions between the troops in the engineering level. Using the interoperation simulation, we can reflect the communication effects on the war game simulation. We show various applications of the interoperation simulation with the point of the war game and communication effect simulator. with a case study, we explain the interoperation simulation improves the reality and fidelity of the war game simulator and how the interoperation simulation can be applied to developing doctrines and real communication system.

Hybrid Systems Modeling and Simulation - PartI: Modeling and Simulation Methodology (하이브리드 시스템 모델링 및 시뮬레이션 - 제1부: 모델링 및 시뮬레이션 방법론)

  • 임성용;김탁곤
    • Journal of the Korea Society for Simulation
    • /
    • v.10 no.3
    • /
    • pp.1-14
    • /
    • 2001
  • A hybrid system is defined as a mixture of continuous systems and discrete event systems. This paper first proposes a framework for hybrid systems modeling, called Hybrid Discrete Event System Specification (HDEVS) formalism. It then presents a method for simulators interoperation in which a continuous system simulator and a discrete event simulator are executed together in a cooperative manner. The formalism can specify a hybrid system in a way that a continuos system and a discrete event system are separately modeled by their own specification formalisms with a support of well-defined interface. We call such interface an A/E converter for analog-to- event conversion and an E/A converter for event-to-analog conversion. Simulators interoperation is based on the concept of pre-simulation in which simulation time for a continuous simulator is advanced in accordance with a discrete event simulator.

  • PDF

DEVSim++ - NS2 Interoperating Environment for Protocol Evaluation (프로토콜 평가를 위한 DEVSim++ 와 NS2 의 연동 환경)

  • 김회준;김탁곤
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2002.05a
    • /
    • pp.253-258
    • /
    • 2002
  • This paper proposes a methodology for development of protocol models. The methodology attempts to employ two modeling environments in models development, NS2 and DEVSim++, which will interoperate during simulation. NS2 is a widely used network simulator in protocol research, which employs an informal modeling approach. Within the approach time and state information of protocol models are not explicitly described, thus being hard to validate model. On the other hand the DEVS formalism is a mathematical framework for modeling a discrete event system in a hierarchical, modular manner. In DEVS, model's time and state information is described explicitly, By using DEVS formalism, models can easily be validated and errors in the modeling stage can be reduced. However, the DEVS simulator, DEVSim++, supports a small amount of models library which are required to build simulation models of general communication network. Although NS2 employs an informal modeling approach and models validation is difficult, it supports abundant models library validated by experimental users. Thus, combination of DEVS models and NS2 models may be an effective solution for network modeling. Such combination requires interoperation between DEVSim++ simulator and NS2 simulator. This paper develops an environment for such interoperation. Correctness and effectiveness of the implemented interoperation environment have been validated by simulation of UDP and TCP models.

  • PDF

Modeling and Simulation Methodology for Defense Systems Based on Concept of System of Systems (복합체계 개념에 기반한 국방체계 모델링 시뮬레이션 방법론)

  • Kim, Tag Gon;Kwon, Se Jung;Kang, Bonggu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.6
    • /
    • pp.450-460
    • /
    • 2013
  • A complex system such as defense systems is in a form of System of Systems (SoS) in which each component is a system being independent of other component systems. Dynamical behavior of SoS is represented by a composition of behaviors of component systems. Thus, a M&S tool/environment would not be efficient for development of heterogeneous models nor for simulation in a centralized environment. Moreover, such an environment restricts reusability and composability. This paper presents an interoperation method for M&S of defense systems as SoS. The approach first develops component system models using tools, each specialized to M&S of each component system. It then interoperates such simulations together to simulate a whole system as SoS. HLA/RTI is employed for such interoperation, which is a DoD/IEEE standard to support interoperation. We will introduce a case study for interoperable simulation of defense systems, which consists of a wargame simulator and a communication simulator.

Joint Analysis of Combat Power and Communication System via Interoperation of War Game Simulator with Communication Network Simulator (워게임 모델과 통신 모델의 연동을 통한 전투력 및 통신시스템 요구 성능의 상호 분석)

  • Kim, Tag Gon;Kim, Deok Su;Sung, Changho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37C no.10
    • /
    • pp.993-1003
    • /
    • 2012
  • This paper presents a method for joint analysis of combat power and communication system performance via interoperation of a war game simulator and a communication network simulator using HLA/RTI. Effectiveness analysis of combat power has been performed by war game simulation with consideration of communication effects simulated by the network simulator. Performance analysis of a communication system has been performed by network simulation with computer forces generated by the war game simulator. Survivability of the red force and transmission power of a tactical FM radio for the blue force have been measured for the joint analysis.

Hybrid Systems Modeling and Simulation - Part II: Interoperable Simulation Environment (하이브리드 시스템 모델링 및 시뮬레이션 - 제2부: 시뮬레이터 연동 환경)

  • 임성용;김탁곤
    • Journal of the Korea Society for Simulation
    • /
    • v.10 no.3
    • /
    • pp.15-30
    • /
    • 2001
  • Hybrid simulation may employ different types of simulation based on which models in different system types are developed. The simulation requires simulation time synchronization and data exchange between such simulators, which is called simulators interoperation. This paper develops such interoperable simulation environments for modeling and simulation of hybrid systems whose components consist of continuous and discrete event systems. The environments, one for centerized and the other for distribute, support interoperation between a discrete event simulator of DEVSim++ and a continuous simulator of MATLAB. The centerized environment, HDEVSim++, is developed by extending the sxisting DEVSim++ environment; the distributed environment, HDEVSimHLA, is developed using the HLA/RTl library. Verification of both environments is made and performance comparison between the two using a simple example is presented. .

  • PDF

Studies on the Operating Requirements of Multi-Resolution Modeling in Training War-Game Model and on the Solutions for Major Issues of Multi-Resolution Interoperation between Combat21 Model and TMPS (훈련용 워게임 모델의 다중해상도모델링 운영소요 및 전투21모델과 TMPS의 다중해상도 연동간 주요 이슈 해결 방안 연구)

  • Moon, Hoseok;Kim, Suhwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.865-876
    • /
    • 2018
  • This study focuses on the operating requirements of multi-resolution modeling(MRM) in training war-game model and proposes solutions for major issues of multi-resolution interoperation between Combat21 model and tank multi-purpose simulator(TMPS). We study the operating requirements of MRM through interviews with defense M&S experts and literature surveys and report the various issues that could occur with low-resolution model Combat21 and high-resolution model TMPS linked, for example, when to switch objects, what information to exchange, what format to switch to, and how to match data resolutions. This study also addresses the purpose and concept of training using multi-resolution interoperation, role of each model included in multi-resolution interoperation, and issue of matching damage assessments when interoperated between models with different resolutions. This study will provide the common goals and directions of MRM research to MRM researchers, defense modeling & simulation organizations and practitioners.

Design and Implementation of Interoperable Adaptor for Simulators Interoperation using IEEE 1516 HLA/RTI (IEEE 1516 HLA/RTI 기반 연동 시뮬레이션을 위한 연동 어댑터의 설계 및 구현)

  • Hong, Jeong-Hee;Sung, Chang-Ho;Ahn, Jung-Hyun;Kim, Tag-Gon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.88-96
    • /
    • 2009
  • Interoperation between heterogeneous simulators employs definition of standard protocols for data exchange and time synchronization among simulators. The High Level Architecture(HLA) is a specification of common services for such interoperation, which is approved as IEEE standard 1516. This paper presents the design and implementation of an interoperable adaptor which supports development of interoperable simulators under the IEEE 1516 HLA/RTI environment. The adaptor, KHLAAdaptor1516, is implemented as a library form which is linked to HLA-compliant simulators. Design of the adaptor employs a protocol conversion method, the model of which is finite state machine. KHLAAdaptor1516 allows developers to separate interoperable adaptors from stand-alone simulators. The interoperable adaptor manages mapping between HLA services and simulation messages for simulator, This separation increases robustness of a federation and reusability of simulators as well as alleviates much effort and time for maintenance.

Design and Implementation of DEVSim++ and DiskSim Interface for Interoperation of System-level Simulation and Disk I/O-level Simulation (시스템수준 시뮬레이션과 디스크 I/O수준 시뮬레이션 연동을 위한 DEVSim++과 DiskSim 사이의 인터페이스 설계 및 구현)

  • Song, Hae Sang;Lee, Sun Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.4
    • /
    • pp.131-140
    • /
    • 2013
  • This paper deals with the design and implementation of an interface for interoperation between DiskSim, a well-known disk simulator, and a system-level simulator based on DEVSim++. Such inter-operational simulation aims at evaluation of an overall performance of storage systems which consist of multiple computer nodes with a variety of I/O level specifications. A well-known system-level simulation framework, DEVSim++ environment is based on the DEVS formalism, which provides a sound semantics of modular and hierarchical modeling methodology at the discrete event systems level such as multi-node computer systems. For maintainability we assume that there is no change of the source codes for two heterogeneous simulation engines. Thus, we adopt a notion of simulators interoperation in which there should be a means to synchronize simulation times as well as to exchange messages between simulators. As an interface for such interoperation DiskSimManager is designed and implemented. Various experiments, comparing the results of the standalone DiskSim simulation and the interoperation simulation using the proposed interface of DiskSimManager, proved that DiskSimManager works correctly as an interface for interoperation between DEVSim++ and DiskSim.

Simulator Interoperation Using DEVSimHLA (DEVSimHLA를 이용한 시뮬레이터 연동)

  • 김재현;김탁곤
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2002.11a
    • /
    • pp.79-83
    • /
    • 2002
  • High Level Architecture (HLA)는 이기종 시뮬레이터 간의 연동을 위한 미들웨어이다. 본 논문에서는 Discrete Event System Specification (DEVS) 형식론을 바탕으로 한 DEVS 모델의 시뮬레이션을 HLA 기반에서 수행하는 방법에 대하여 제시한다. DEVS 시뮬레이션 메시지를 HLA의 서비스를 사용하여 변환하여 기존의 시뮬레이션 알고리즘을 그대로 사용하여 분산 시뮬레이션 할 수 있는 방식에 대하여 기술한다. 또한 모델 사이의 연결 정보를 HLA 환경에서 이용하는 방식에 대하여 기술한다. 제안된 방식을 구현한 DEVSimHLA 시뮬레이션 환경의 구조 및 동작 방식에 대하여 알아보고 이를 이용한 간단한 예제를 보인다.

  • PDF