• Title/Summary/Keyword: Internet of Energy

Search Result 1,245, Processing Time 0.023 seconds

An Energy Harvesting and Profiling System for Smart Video Devices (스마트 비디오 디바이스를 위한 에너지 하비스팅 및 프로파일링 시스템)

  • Kang, Doo-sik;Kim, Jun-sik;Park, Keon-woo;Lee, Myeong-jin
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.1
    • /
    • pp.99-106
    • /
    • 2017
  • In this paper, an energy harvesting and profiling system is designed for smart video devices in internet of things environments without dedicated power source. The energy harvesting module provides the harvested energy from solar panel to the smart video device. The energy profiling module measures the battery outflow current and the battery voltage of the smart video device and the consumed energy of processes, and calculate the harvested energy from the energy harvesting module to the smart video device and the total energy consumption of the smart video device. The accuracy of the harvested energy measured by the device energy profiling module is validated by comparing with the calculated energy using the regional solar radiation provided by Korea Meteorological Administration. Energy harvesting data from the designed energy harvesting and profiling system can be used to design the perpetual operation of smart video devices or Internet of Things sensors.

Cost-Aware Scheduling of Computation-Intensive Tasks on Multi-Core Server

  • Ding, Youwei;Liu, Liang;Hu, Kongfa;Dai, Caiyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5465-5480
    • /
    • 2018
  • Energy-efficient task scheduling on multi-core server is a fundamental issue in green cloud computing. Multi-core processors are widely used in mobile devices, personal computers, and servers. Existing energy efficient task scheduling methods chiefly focus on reducing the energy consumption of the processor itself, and assume that the cores of the processor are controlled independently. However, the cores of some processors in the market are divided into several voltage islands, in each of which the cores must operate on the same status, and the cost of the server includes not only energy cost of the processor but also the energy of other components of the server and the cost of user waiting time. In this paper, we propose a cost-aware scheduling algorithm ICAS for computation intensive tasks on multi-core server. Tasks are first allocated to cores, and optimal frequency of each core is computed, and the frequency of each voltage island is finally determined. The experiments' results show the cost of ICAS is much lower than the existing method.

Routing Protocol for Wireless Sensor Networks Based on Virtual Force Disturbing Mobile Sink Node

  • Yao, Yindi;Xie, Dangyuan;Wang, Chen;Li, Ying;Li, Yangli
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.4
    • /
    • pp.1187-1208
    • /
    • 2022
  • One of the main goals of wireless sensor networks (WSNs) is to utilize the energy of sensor nodes effectively and maximize the network lifetime. Thus, this paper proposed a routing protocol for WSNs based on virtual force disturbing mobile Sink node (VFMSR). According to the number of sensor nodes in the cluster, the average energy and the centroid factor of the cluster, a new cluster head (CH) election fitness function was designed. At the same time, a hexagonal fixed-point moving trajectory model with the best radius was constructed, and the virtual force was introduced to interfere with it, so as to avoid the frequent propagation of sink node position information, and reduce the energy consumption of CH. Combined with the improved ant colony algorithm (ACA), the shortest transmission path to Sink node was constructed to reduce the energy consumption of long-distance data transmission of CHs. The simulation results showed that, compared with LEACH, EIP-LEACH, ANT-LEACH and MECA protocols, VFMSR protocol was superior to the existing routing protocols in terms of network energy consumption and network lifetime, and compared with LEACH protocol, the network lifetime was increased by more than three times.

Interference Management Algorithm Based on Coalitional Game for Energy-Harvesting Small Cells

  • Chen, Jiamin;Zhu, Qi;Zhao, Su
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4220-4241
    • /
    • 2017
  • For the downlink energy-harvesting small cell network, this paper proposes an interference management algorithm based on distributed coalitional game. The cooperative interference management problem of the energy-harvesting small cells is modeled as a coalitional game with transfer utility. Based on the energy harvesting strategy of the small cells, the time sharing mode of the small cells in the same coalition is determined, and an optimization model is constructed to maximize the total system rate of the energy-harvesting small cells. Using the distributed algorithm for coalition formation proposed in this paper, the stable coalition structure, optimal time sharing strategy and optimal power distribution are found to maximize the total utility of the small cell system. The performance of the proposed algorithm is discussed and analyzed finally, and it is proved that this algorithm can converge to a stable coalition structure with reasonable complexity. The simulations show that the total system rate of the proposed algorithm is superior to that of the non-cooperative algorithm in the case of dense deployment of small cells, and the proposed algorithm can converge quickly.

Temporal and Spatial Traffic Analysis Based on Human Mobility for Energy Efficient Cellular Network

  • Li, Zhigang;Wang, Xin;Zhang, Junsong;Huang, Wei;Tian, Ye
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.114-130
    • /
    • 2021
  • With the drastic growth of Information and Communication Technology (ICT) industry, global energy consumption is exponentially increased by mobile communications. The huge energy consumption and increased environmental awareness have triggered great interests on the research of dynamic distribution of cell user and traffic, and then designing the energy efficient cellular network. In this paper, we explore the temporal and spatial characteristics of human mobility and traffic distribution using real data set. The analysis results of cell traffic illustrate the tidal effect in temporal and spatial dimensions and obvious periodic characteristics which can be used to design Base Station (BS) dynamic with sleeping or shut-down strategy. At the same time, we designed a new Cell Zooming and BS cooperation mode. Through simulation experiments, we found that running in this mode can save about 35% of energy consumption and guarantee the required quality of service.

A Study for Space-based Energy Management System to Minimizing Power Consumption in the Big Data Environments (소비전력 최소화를 위한 빅데이터 환경에서의 공간기반 에너지 관리 시스템에 관한 연구)

  • Lee, Yong-Soo;Heo, Jun;Choi, Yong-Hoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.6
    • /
    • pp.229-235
    • /
    • 2013
  • This paper proposed the method to reduce and manage the amount of using power by using the Self-Learning of inference engine that evolves through learning increasingly smart ways for each spaces with in the Space-Based Energy Management System (SEMS, Space-based Energy Management System) that is defined as smallest unit space with constant size and similar characteristics by using the collectible Big Data from the various information networks and the informations of various sensors from the existing Energy Management System(EMS), mostly including such as the Energy Management Systems for the Factory (FEMS, Factory Energy Management System), the Energy Management Systems for Buildings (BEMS, Building Energy Management System), and Energy Management Systems for Residential (HEMS, Home Energy Management System), that is monitoring and controlling the power of systems through various sensors and administrators by measuring the temperature and illumination.

Energy Efficient Cell Management by Flow Scheduling in Ultra Dense Networks

  • Sun, Guolin;Addo, Prince Clement;Wang, Guohui;Liu, Guisong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4108-4122
    • /
    • 2016
  • To address challenges of an unprecedented growth in mobile data traffic, the ultra-dense network deployment is a cost efficient solution to off-load the traffic over other small cells. However, the real traffic is often much lower than the peak-hour traffic and certain small cells are superfluous, which will not only introduce extra energy consumption, but also impose extra interference onto the radio environment. In this paper, an elastic energy efficient cell management scheme is proposed based on flow scheduling among multi-layer ultra-dense cells by a SDN controller. A significant power saving was achieved by a cell-level energy manager. The scheme is elastic for energy saving, adaptive to the dynamic traffic distribution in the office or campus environment. In the end, the performance is evaluated and demonstrated. The results show substantial improvements over the conventional method in terms of the number of active BSs, the handover times, and the switches of BSs.

Adaptive Cloud Offloading of Augmented Reality Applications on Smart Devices for Minimum Energy Consumption

  • Chung, Jong-Moon;Park, Yong-Suk;Park, Jong-Hong;Cho, HyoungJun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3090-3102
    • /
    • 2015
  • The accuracy of an augmented reality (AR) application is highly dependent on the resolution of the object's image and the device's computational processing capability. Naturally, a mobile smart device equipped with a high-resolution camera becomes the best platform for portable AR services. AR applications require significant energy consumption and very fast response time, which are big burdens to the smart device. However, there are very few ways to overcome these burdens. Computation offloading via mobile cloud computing has the potential to provide energy savings and enhance the performance of applications executed on smart devices. Therefore, in this paper, adaptive mobile computation offloading of mobile AR applications is considered in order to determine optimal offloading points that satisfy the required quality of experience (QoE) while consuming minimum energy of the smart device. AR feature extraction based on SURF algorithm is partitioned into sub-stages in order to determine the optimal AR cloud computational offloading point based on conditions of the smart device, wireless and wired networks, and AR service cloud servers. Tradeoffs in energy savings and processing time are explored also taking network congestion and server load conditions into account.

Energy-saving Strategy Based on an Immunization Algorithm for Network Traffic

  • Zhao, Dongyan;Long, Keping;Wang, Dongxue;Zheng, Yichuan;Tu, Jiajing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.4
    • /
    • pp.1392-1403
    • /
    • 2015
  • The rapid development of both communication traffic and increasing optical network sizes has increased energy consumption. Traditional algorithms and strategies don't apply to controlling the expanded network. Immunization algorithms originated from the complex system theory are feasible for large-scale systems based on a scale-free network model. This paper proposes the immunization strategy for complex systems which includes random and targeted immunizations to solve energy consumption issues and uses traffic to judge the energy savings from the node immunization. The simulation results verify the effectiveness of the proposed strategy. Furthermore, this paper provides a possibility for saving energy with optical transmission networks.

Adaptive k-means clustering for Flying Ad-hoc Networks

  • Raza, Ali;Khan, Muhammad Fahad;Maqsood, Muazzam;Haider, Bilal;Aadil, Farhan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2670-2685
    • /
    • 2020
  • Flying ad-hoc networks (FANETs) is a vibrant research area nowadays. This type of network ranges from various military and civilian applications. FANET is formed by micro and macro UAVs. Among many other problems, there are two main issues in FANET. Limited energy and high mobility of FANET nodes effect the flight time and routing directly. Clustering is a remedy to handle these types of problems. In this paper, an efficient clustering technique is proposed to handle routing and energy problems. Transmission range of FANET nodes is dynamically tuned accordingly as per their operational requirement. By optimizing the transmission range packet loss ratio (PLR) is minimized and link quality is improved which leads towards reduced energy consumption. To elect optimal cluster heads (CHs) based on their fitness we use k-means. Selection of optimal CHs reduce the routing overhead and improves energy consumption. Our proposed scheme outclasses the existing state-of-the-art techniques, ACO based CACONET and PSO based CLPSO, in terms of energy consumption and cluster building time.