• Title/Summary/Keyword: Internet based tele-operation

Search Result 13, Processing Time 0.032 seconds

Position Estimation of a Mobile Robot Based on USN and Encoder and Development of Tele-operation System using Internet (USN과 회전 센서를 이용한 이동로봇의 위치인식과 인터넷을 통한 원격제어 시스템 개발)

  • Park, Jong-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.6
    • /
    • pp.55-61
    • /
    • 2009
  • This paper proposes a position estimation of a mobile robot based on USN(Ubiquitous Sensor Network) and encoder, and development of tele-operation system using Internet. USN used in experiments is based on ZigBee protocol and has location estimation engine which uses RSSI signal to estimate distance between nodes. By distortion the estimated distance using RSSI is not correct, compensation method is needed. We obtained fuzzy model to calculate more accurate distance between nodes and use encoder which is built in robot to estimate accurate position of robot. Based on proposed position estimation method, tele-operation system was developed. We show by experiment that proposed method is more appropriate for estimation of position and remote navigation of mobile robot through Internet.

  • PDF

Internet Based Tele-operation of the Autonomous Mobile Robot (인터넷을 통한 자율이동로봇 원격 제어)

  • Sim, Kwee-Bo;Byun, Kwang-Sub
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.6
    • /
    • pp.692-697
    • /
    • 2003
  • The researches on the Internet based tole-operation have received increased attention for the past few years. In this paper, we implement the Internet based tele-operating system. In order to transmit robustly the surroundings and control information of the robot, we make a data as a packet type. Also in order to transmit a very large image data, we use PEG compressive algorithm. The central problem in the Internet based tele-operation is the data transmission latency or data-loss. For this specific problem, we introduce an autonomous mobile robot with a 2-layer fuzzy controller. Also, we implement the color detection system and the robot can perceive the object. We verify the efficacy of the 2-layer fuzzy controller by applying it to a robot that is equipped with various input sensors. Because the 2-layer fuzzy controller can control robustly the robot with various inputs and outputs and the cost of control is low, we hope it will be applied to various sectors.

Internet-based Real-time Obstacle Avoidance of a Mobile Robot

  • Ko Jae-Pyung;Lee Jang-Myung
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.1290-1303
    • /
    • 2005
  • In this research, a remote control system has been developed and implemented, which combines autonomous obstacle avoidance in real-time with force-reflective tele-operation. A tele-operated mobile robot is controlled by a local two-degrees-of-freedom force-reflective joystick that a human operator holds while he is monitoring the screen. In the system, the force-reflective joystick transforms the relation between a mobile robot and the environment to the operator as a virtual force which is generated in the form of a new collision vector and reflected to the operator. This reflected force makes the tele-operation of a mobile robot safe from collision in an uncertain and obstacle-cluttered remote environment. A mobile robot controlled by a local operator usually takes pictures of remote environments and sends the images back to the operator over the Internet. Because of limitations of communication bandwidth and the narrow view-angles of the camera, the operator cannot observe shadow regions and curved spaces frequently. To overcome this problem, a new form of virtual force is generated along the collision vector according to both distance and approaching velocity between an obstacle and the mobile robot, which is obtained from ultrasonic sensors. This virtual force is transferred back to the two-degrees-of-freedom master joystick over the Internet to enable a human operator to feel the geometrical relation between the mobile robot and the obstacle. It is demonstrated by experiments that this haptic reflection improves the performance of a tele-operated mobile robot significantly.

Design and Implementation of Tele-operation system based on the Haptic Interface

  • Lee, Jong-Bae;Lim, Joon-Hong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.161-165
    • /
    • 2003
  • In this paper, we investigate the issues on the design and implementation of tele-operation system based on the haptic interface. Here, the 3-DOF haptic device and the X-Y-Z stage are employed as master controller and slave system respectively. For this master-slave system, the force feedback algorithm, the modeling of virtual environments and the control method of X-Y-Z stage are presented. In this paper, internet network is used for data communication between master and slave. We construct virtual environment of the real convex surface from the force-feedback in controlling the X-Y-Z stage and measuring the force applied by the 3-DOF haptic device.

Event Based Tele-Operation with Variable Holding Time (가변 지속시간을 갖는 이벤트 기반 원격제어)

  • 박준영;박장현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.70-77
    • /
    • 2002
  • Necessity of the tole-operation has been increased in many fields. Since the Internet is inexpensive and available all over the world, it is a strong candidate for the transmission media of the tole-operation. However, the Internet has random time delays that may cause instability in the system especially if the tole -operation is bilateral. In the past few years many attempts have been made to overcome the random time delay, So far, they are still insufficient in terms of performance. The ‘Variable holding time’ is introduced to improve the performance of the ‘Event based tole-operation’ which controls a system with a non-time action reference. By holding each event for proper time, the system can quickly respond and be stabilized. The proper holding time should be selected based on the characteristics of the task that the system performs. The factors that reflect those characteristics are investigated. The fuzzy logic is employed to obtain the proper holding time for each event while the tole-operation system is in operation. The experimental results presented in this paper verify effectiveness of the proposed method.

Internet Based Remote Control of a Mobile Robot (인터넷 기반 이동로봇의 원격제어)

  • Choi, Mi-Young;Park, Jang-Hyun;Kim, Seong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.502-504
    • /
    • 2004
  • With rapidly growing of computer and internet technology, Internet-based tote-operation of robotic systems has created new opportunities in resource sharing, long-distance learning, and remote experimentation. In this paper, remote control system of a mobile robot through the internet has been designed. The internet users can access and command a mobile robot in the real time, receiving the robot's sensor data. The overall system has been tested and its usefulness shown through the experimental results.

  • PDF

Design of Haptic Tele-operation System (네트웍 기반 원격제어시스템의 설계)

  • Park, Chang-Woo;Ku, Ja-Yl;Ohm, Woo-Yong
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1171-1172
    • /
    • 2008
  • In this paper, we investigate the issues on the design and implementation of tele-operation system based on the haptic interface. Here, the 3-DOF haptic device and the X-Y-Z stage are employed as master controller and slave system respectively. For this master-slave system, the force feedback algorithm, the modeling of virtual environments and the control method of X-Y-Z stage are presented. In this paper, internet network is used for data communication between master and slave.

  • PDF

Interacting Mobile Robots for Tele-Operation System Using the Internet

  • Park, Kwang-Soo;Ahn, Doo-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.44.1-44
    • /
    • 2001
  • This paper discusses the interacting mobile robots for tele-operation system using the world wide web. In multi-agent and web-based teleoperation environment the problem of communication delay must be solved for the efficient and robust control of the system. The standard graphic user interface(GUI)is implemented using Java Programing language. The web browser is used to integrate the virtual environment and the standard GUI(Java applet) in a single user interface. Users can access a dedicated WWWserver and download the user interface. Reinforcement learning is applied to indirect control in order to autonomously operate without the need of human intervention. Java application has been developed to communicate and control multi robots using WWW. The effectiveness of our multi robots system is verified by simulation and experiments ...

  • PDF

Real-Time Haptic Rendering for Tele-operation with Varying Communication Time Delay (가변적인 통신지연시간을 갖는 원격 작업 환경을 위한 실시간 햅틱 렌더링)

  • Lee, K.;Chung, S.Y.
    • Journal of Power System Engineering
    • /
    • v.13 no.2
    • /
    • pp.71-82
    • /
    • 2009
  • This paper presents a real-time haptic rendering method for a realistic force feedback in a remote environment with varying communication time-delay. The remote environment is assumed as a virtual environment based on a computer graphics, for example, on-line shopping mall, internet game and cyber-education. The properties of a virtual object such as stiffness and viscosity are assumed to be unknown because they are changed according to the contact position and/or a penetrated depth into the object. The DARMAX model based output estimator is proposed to trace the correct impedance of the virtual object in real-time. The output estimator is developed on the input-output relationship. It can trace the varying impedance in real-time by virtue of P-matrix resetting algorithm. And the estimator can trace the correct impedance by using a white noise that prevents the biased input-output information. Realistic output forces are generated in real-time, by using the inputs and the estimated impedance, even though the communication time delay and the impedance of the virtual object are unknown and changed. The generated forces trace the analytical forces computed from the virtual model of the remote environment. Performance is demonstrated by experiments with a 1-dof haptic device and a spring-damper-based virtual model.

  • PDF

Development of the remote control system for Internet-based mobile robot using Embedded Linux and Qt

  • Park, Tae-Gyu;Jeon, Jae-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.622-627
    • /
    • 2003
  • The existing remote control system have some inherent disadvantage of direct control in the limit range. In some special cases, for example, a power apparatus, an unmanned factory, a nuclear factory, a security management system, the tele-operation is needed to control remote robot without limit space. This field is based on the Internet communication. Because the Internet is constructed all over the world. And it is possible that we control remote mobile robot in the long distance. In this paper, we developed a remote control system. This system is divided into two primary parts. These are local site and remote site. There are the moving robot and web server in the remote site and there is the robot control device in local site. The moving robot is moved by two stepper motors and the robot control device consists of SA-1100 micro controller and embedded Linux. And this controller is an embedded system. Public personal computer which is connected the Internet is used for the web server. The web server provides the mobile robot control interface program to the remote controller and captures the image for feedback information. In the whole system, a robot control device is connected with moving robot and web server through the Internet. So the operator can control the moving robot in the distance through the Internet.

  • PDF