• 제목/요약/키워드: Internet Use for Learning

검색결과 518건 처리시간 0.032초

LSTM Android Malicious Behavior Analysis Based on Feature Weighting

  • Yang, Qing;Wang, Xiaoliang;Zheng, Jing;Ge, Wenqi;Bai, Ming;Jiang, Frank
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권6호
    • /
    • pp.2188-2203
    • /
    • 2021
  • With the rapid development of mobile Internet, smart phones have been widely popularized, among which Android platform dominates. Due to it is open source, malware on the Android platform is rampant. In order to improve the efficiency of malware detection, this paper proposes deep learning Android malicious detection system based on behavior features. First of all, the detection system adopts the static analysis method to extract different types of behavior features from Android applications, and extract sensitive behavior features through Term frequency-inverse Document Frequency algorithm for each extracted behavior feature to construct detection features through unified abstract expression. Secondly, Long Short-Term Memory neural network model is established to select and learn from the extracted attributes and the learned attributes are used to detect Android malicious applications, Analysis and further optimization of the application behavior parameters, so as to build a deep learning Android malicious detection method based on feature analysis. We use different types of features to evaluate our method and compare it with various machine learning-based methods. Study shows that it outperforms most existing machine learning based approaches and detects 95.31% of the malware.

Adaptive Hypermedia for eLearning: An Implementation Framework

  • Dutta, Diptendu;Majumdar, Shyamal;Majumdar, Chandan
    • 한국멀티미디어학회논문지
    • /
    • 제6권4호
    • /
    • pp.676-684
    • /
    • 2003
  • eLearning can be defined as an approach to teaching and teaming that utilises Internet technologies to communicate and collaborate in an educational context. This includes technology that supplements traditional classroom training with web-based components and learning environments where the educational process is experienced online. The use of hypertext as an educational tool has a very rich history. The advent of the internet and one of its major application, the world wide web (WWW), has given a tremendous boost to the theory and practice of hypermedia systems for educational purposes. However, the web suffers from an inability to satisfy the heterogeneous needs of a large number of users. For example, web-based courses present the same static teaming material to students with widely differing knowledge of the subject. Adaptive hypermedia techniques can be used to improve the adaptability of eLearning. In this paper we report an approach to the design a unified implementation framework suitable for web-based eLearning that accommodates the three main dimensions of hypermedia adaptation: content, navigation, and presentation. The framework externalises the adaptation strategies using XML notation. The separation of the adaptation strategies from the source code of the eLearning software enables a system using the framework to quickly implement a variety of adaptation strategies. This work is a part of our more general ongoing work on the design of a framework for adaptive content delivery. parts of the framework discussed in this paper have been imulemented in a commercial eLearning engine.

  • PDF

A Flipped Classroom Model For Algorithm In College

  • Lee, Su-Hyun
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권1호
    • /
    • pp.153-159
    • /
    • 2017
  • In recent years there has been a rise in the use and interest of the flipped learning as a teaching and learning paradigm. The flipped learning model includes any use of Internet technology to enrich the learning in a classroom, so that a professor can spend more time interacting with students instead of lecturing. In the flipped model, students viewed video lectures online outside of class time. Students then performed two kinds of assignments, a teamwork assignment and an individual work assignment, through the class time. In this paper, we propose a flipped educational model for a college class. This experimental research compares class of college algorithm using the flipped classroom methods and the traditional lecture-homework structure and its effect on student achievement. The result data of mid-term exam and final exam were analyzed and compared with previous year data. The findings of this research show that there was not a significant difference in the scores of student between two lecturing methods. The survey result and lecture evaluation by students show that students are in favor of the flipped learning.

인터넷 수업에서의 CEDA(Cross Examination Debate Association) 토론 모델연구 (Developing CEDA Model for Internet-based Class)

  • 조은순
    • 한국콘텐츠학회논문지
    • /
    • 제6권3호
    • /
    • pp.93-101
    • /
    • 2006
  • 본 연구는 미국의 토론 모형인 CEDA (Cross Examination Debate Association)방식을 인터넷 토론학습에 적용하는 새로운 시도를 통하여 향후 인터넷 수업에 응용할 수 있는 CEDA형 인터넷 토론수업 모델을 설계하는데 그 목적이 있다. 먼저 본 연구는 미국의 CEDA토론 기법의 기본 요소를 인터넷 토론학습모델에 적용한 수업설계를 통하여 1,2차에 걸쳐 각각 200명의 학습자들에게 인터넷 CEDA토론을 실시하고 그 결과와 토론에 대한 의견을 분석하였다. 연구결과 학생들은 인터넷 CEDA토론학습에 대해 긍정적인 반응을 나타냈으며, 기존의 개방형 토론방법보다 찬반형의 CEDA토론방법을 선호하는 것으로 밝혀졌다. 하지만 2차 연구에서는 토론에서 튜터의 중요성이 강조되며 튜터의 전략에 따라 토론결과가 달라 질 수 있음을 보여주었다. 이는 대부분의 학습자들이 스스로 토론에 대한 경험이 부족함을 보완하기 위해 튜터의 지원을 원하는 것으로 판단된다. 결론으로 본 연구는 CEDA형 인터넷 토론학습 모델이 학교현장에 폭넓게 활용될 수 있도록 교과목별, 학습자별 다양한 토론학습 모델이 개발되어야 하며 학습자 입장에서 토론수업을 지원할 수 있는 전략이 필요함을 강조한다.

  • PDF

A machine learning framework for performance anomaly detection

  • Hasnain, Muhammad;Pasha, Muhammad Fermi;Ghani, Imran;Jeong, Seung Ryul;Ali, Aitizaz
    • 인터넷정보학회논문지
    • /
    • 제23권2호
    • /
    • pp.97-105
    • /
    • 2022
  • Web services show a rapid evolution and integration to meet the increased users' requirements. Thus, web services undergo updates and may have performance degradation due to undetected faults in the updated versions. Due to these faults, many performances and regression anomalies in web services may occur in real-world scenarios. This paper proposed applying the deep learning model and innovative explainable framework to detect performance and regression anomalies in web services. This study indicated that upper bound and lower bound values in performance metrics provide us with the simple means to detect the performance and regression anomalies in updated versions of web services. The explainable deep learning method enabled us to decide the precise use of deep learning to detect performance and anomalies in web services. The evaluation results of the proposed approach showed us the detection of unusual behavior of web service. The proposed approach is efficient and straightforward in detecting regression anomalies in web services compared with the existing approaches.

규칙유도기법을 이용한 이러닝 시스템의 재이용의도 영향요인 분석 및 예측에 관한 연구 (A study on the Analysis and Forecast of Effect Factors in e-Learning Reuse Intention Using Rule Induction Techniques)

  • 배재권;김진화;정화민
    • Journal of Information Technology Applications and Management
    • /
    • 제17권2호
    • /
    • pp.71-90
    • /
    • 2010
  • Electronic learning(or e-learning) has created hype for companies, universities, and other educational institutions. It has led to the phenomenal growth in the use of web-based learning and experimentation with multimedia, video conferencing, and internet-based technologies. Many researchers are interested in the factors that affect to the performance of e-learning or e-learning services. In this sense, this study is aimed at proposing e-learning system reuse prediction models in which e-learner intention to reuse influence factors(i.e., system accessibility, system stability, information clarity, information validity, self-regulated efficacy, computer self-efficacy, perceived usefulness, perceived ease of use, flow, and parental expectation) affect e-learner intention to reuse positively. A web survey was conducted for the full members of the e-learning education institute A in Seoul, Republic of Korea, an exclusive e-learning company that provides real time video lectures via the desktop conferencing system. The web survey was conducted for 20 days from November 5, 2009, through the e-learning web site of the company A. In this study, three data mining techniques were used : the multivariate discriminant analysis, CART, and C5.0 algorithm. This study was conducted to provide the e-learning service providers, e-learning operators, and contents developers with marketing and management strategies for improving the e-learning service companies, based on the data mining analysis results.

  • PDF

중등 생물교과 심화과정 학습용 웹 기반 학습 프로그램 개발 및 적용 (Development and Application of Web-based Instruction Program for the Enriched Course of School Biology)

  • 예진희;박창보;서혜애;송방호
    • 한국과학교육학회지
    • /
    • 제22권2호
    • /
    • pp.299-313
    • /
    • 2002
  • 본 연구에서는 제7차 교육과정의 중등 과학 생물영역 심화학습을 위한 웹 기반 학습 프로그램을 개발하였으며, 중학교 3학년을 대상으로 적용한 결과를 분석하였다. 중학교 전학년 및 고등학교 1학년 생물영역 심화과정의 5개 주제를 선정하여 의문형으로 제시했으며, 각 주제별로 4개의 하위 학습단원 '활동'을 설정. 총 20개의 '활동'을 개발하였다. 먼저 2개의 하위활동은 기본 및 심화과정 학습내용을 설명하고, 3번째 하위활동은 가상실험을, 4번째 하위활동은 평가 및 정리 문제를 제시하는 방향에서 설계하였다. 이외에 풍부한 자료와 보충 설명을 위하여 용어 사전을 4개 하위활동에 삽입하였다. 각 활동은 하이퍼링트시켜 서로 상호 연결되도록 하였으며, 학습자가 직접실험을 설계 수행하고 결과를 확인할 수 있도록 가상실험을 설계하였다. 개발된 웹 기반 학습 프로그램의 효과를 분석하기 위하여, 중학교 3학년 247명의 학생들을 대상으로 프로그램을 적용하고 설문조사를 실시하였다. 그 결과 대부분의 학생들은 가정에서 인터넷을 사용할 수 있는 것으로 나타났으며, 과제학습을 수행하기보다는 e-mail이나 정보 검색을 목적으로 인터넷을 활용하는 것으로 조사되었다. 프로그램을 학습한 67명의 학생들은 프로그램을 학습하지 않은 학생들에 비해 '생식과 발생'단원의 학습성취도에서 유의미하게 높은 점수를 얻었다. 또한, 학생들은 웹 기반 학습 프로그램의 가상실험과 애니메이션 효과를 선호하였으며, 프로그램이 다른 웹 기반 프로그램에 비해 우수하다고 평가하였다. 반면, 웹 기반 학습 프로그램을 학습하지 않은 학생들은 다론 웹 기반학습 프로그램에 관심이 없으며, 과학에도 흥미가 없다고 응답하였다. 최근 학생들이 가정과 학교에서 인터넷을 활용할 수 있는 여건은 조성되었으나, 학생들의 흥미와 학습효과를 신장시킬 수 있는 웹 기반 프로그램의 개발 보급은 미비한 것으로 밝혀졌다. 결론적으로 가상실험, 애니메이션, 다양한 학습자료를 제공할 수 있는 인터넷의 환경을 효율적으로 활용하여, 학생들의 과학에 대한 흥미와 학업 성취도를 높이는 과학분야의 웹 기반 학습프로그램을 개발하는 일이 시급한 것으로 밝혀졌다.

인터넷을 이용한 간호학 교육 프로그램 개발 및 효과분석 -간호정보학을 중심으로- (The Development and Effect Analysis of an Internet Based Nursing Program: Application to Nursing Informatics)

  • 염영희
    • 대한간호학회지
    • /
    • 제30권4호
    • /
    • pp.1035-1044
    • /
    • 2000
  • The purpose of this study was to develop and evaluate an internet based program for nursing informatics. The course subject, Nursing Informatics, was made by a computerized instructional module using the internet. The program was developed after taking into consideration the level of competence and knowledge in the subjects. It was based on 10 steps of the CAI module developed by Alessi and Trollip. The subjects consisted of 76 junior nursing students taking a Nursing Informatics course. Two sets of questionnaires were used for this study. First, a questionnaire was administered to 76 students to collect general information on their experience while using computers and the internet. Secondly, another questionnaire was administrated to 76 students after they took the course. They were asked to evaluate the program in terms of easiness of use, precision of contents, freshness of contents, motivation in learning, effectiveness of learning, enhancement of communication, precision of screen, and interest in the contents. IDs and passwords were given to the students. The students were asked to write their IDs and passwords when they connected to Nursing Informatics (http://hallym.ac.kr/~yhyom/ inform.html). They were led the menu page which was categorized into 8 icons (i. e., syllabus, lecture notes, quick test, Q & A board, assignment, on-line test, related web sites and mailing lists) after confirming their IDs and passwords. The students' responses were very positive. This program was a very useful in increasing the effectiveness of learning and motivation in the students. Suggest to be use for other nursing courses.

  • PDF

종단자료 분석을 통한 청소년 미디어 교육 활용 특성 분석 연구 (A Study on the Feature of Using Media for Education through Longitudinal Data Analysis)

  • 허균
    • 인터넷정보학회논문지
    • /
    • 제21권4호
    • /
    • pp.77-85
    • /
    • 2020
  • 본 연구는 학생들의 성장에 따른 미디어 교육 활용 특성 종단적 변화를 알아보고자 하였다. 이를 위해 미디어의 교육적 활용 특성을 학습이용, 정보이용, 그리고 게임이용으로 구분하였다. 잠재성장모형을 적용하여 학습이용, 정보이용, 게임이용의 종단적 변화를 탐색하였다. 이후 3가지 미디어 교육적 활용 특성의 종단적 변화에서 성별 차이를 검증하였다. 한국청소년패널조사(KYPS)의 중등2패널을 활용하여 4년간 반복 추적 조사한 3,499명의 데이터를 분석하였다. 연구결과 (a) 학년이 증감함으로써 미디어의 학습이용과 정보이용의 변화율은 증가하는 경향을 나타내었다. (b) 여학생의 미디어 학습이용과 정보이용의 초기치와 변화율이 높은 것으로 나타났다. (c) 학년이 증가함으로써 미디어의 게임이용은 변화율이 감소하는 것으로 나타났다. (d) 미디어 게임이용에서는 초기치에는 남학생이 여학생보다 높은 것으로 나타났으나, 변화율에는 유의한 차이가 없는 것으로 나타났다.

A Study on the Classification of Variables Affecting Smartphone Addiction in Decision Tree Environment Using Python Program

  • Kim, Seung-Jae
    • International journal of advanced smart convergence
    • /
    • 제11권4호
    • /
    • pp.68-80
    • /
    • 2022
  • Since the launch of AI, technology development to implement complete and sophisticated AI functions has continued. In efforts to develop technologies for complete automation, Machine Learning techniques and deep learning techniques are mainly used. These techniques deal with supervised learning, unsupervised learning, and reinforcement learning as internal technical elements, and use the Big-data Analysis method again to set the cornerstone for decision-making. In addition, established decision-making is being improved through subsequent repetition and renewal of decision-making standards. In other words, big data analysis, which enables data classification and recognition/recognition, is important enough to be called a key technical element of AI function. Therefore, big data analysis itself is important and requires sophisticated analysis. In this study, among various tools that can analyze big data, we will use a Python program to find out what variables can affect addiction according to smartphone use in a decision tree environment. We the Python program checks whether data classification by decision tree shows the same performance as other tools, and sees if it can give reliability to decision-making about the addictiveness of smartphone use. Through the results of this study, it can be seen that there is no problem in performing big data analysis using any of the various statistical tools such as Python and R when analyzing big data.