• Title/Summary/Keyword: International business

Search Result 4,846, Processing Time 0.033 seconds

Predicting stock movements based on financial news with systematic group identification (시스템적인 군집 확인과 뉴스를 이용한 주가 예측)

  • Seong, NohYoon;Nam, Kihwan
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.1-17
    • /
    • 2019
  • Because stock price forecasting is an important issue both academically and practically, research in stock price prediction has been actively conducted. The stock price forecasting research is classified into using structured data and using unstructured data. With structured data such as historical stock price and financial statements, past studies usually used technical analysis approach and fundamental analysis. In the big data era, the amount of information has rapidly increased, and the artificial intelligence methodology that can find meaning by quantifying string information, which is an unstructured data that takes up a large amount of information, has developed rapidly. With these developments, many attempts with unstructured data are being made to predict stock prices through online news by applying text mining to stock price forecasts. The stock price prediction methodology adopted in many papers is to forecast stock prices with the news of the target companies to be forecasted. However, according to previous research, not only news of a target company affects its stock price, but news of companies that are related to the company can also affect the stock price. However, finding a highly relevant company is not easy because of the market-wide impact and random signs. Thus, existing studies have found highly relevant companies based primarily on pre-determined international industry classification standards. However, according to recent research, global industry classification standard has different homogeneity within the sectors, and it leads to a limitation that forecasting stock prices by taking them all together without considering only relevant companies can adversely affect predictive performance. To overcome the limitation, we first used random matrix theory with text mining for stock prediction. Wherever the dimension of data is large, the classical limit theorems are no longer suitable, because the statistical efficiency will be reduced. Therefore, a simple correlation analysis in the financial market does not mean the true correlation. To solve the issue, we adopt random matrix theory, which is mainly used in econophysics, to remove market-wide effects and random signals and find a true correlation between companies. With the true correlation, we perform cluster analysis to find relevant companies. Also, based on the clustering analysis, we used multiple kernel learning algorithm, which is an ensemble of support vector machine to incorporate the effects of the target firm and its relevant firms simultaneously. Each kernel was assigned to predict stock prices with features of financial news of the target firm and its relevant firms. The results of this study are as follows. The results of this paper are as follows. (1) Following the existing research flow, we confirmed that it is an effective way to forecast stock prices using news from relevant companies. (2) When looking for a relevant company, looking for it in the wrong way can lower AI prediction performance. (3) The proposed approach with random matrix theory shows better performance than previous studies if cluster analysis is performed based on the true correlation by removing market-wide effects and random signals. The contribution of this study is as follows. First, this study shows that random matrix theory, which is used mainly in economic physics, can be combined with artificial intelligence to produce good methodologies. This suggests that it is important not only to develop AI algorithms but also to adopt physics theory. This extends the existing research that presented the methodology by integrating artificial intelligence with complex system theory through transfer entropy. Second, this study stressed that finding the right companies in the stock market is an important issue. This suggests that it is not only important to study artificial intelligence algorithms, but how to theoretically adjust the input values. Third, we confirmed that firms classified as Global Industrial Classification Standard (GICS) might have low relevance and suggested it is necessary to theoretically define the relevance rather than simply finding it in the GICS.

The Effects of the High-tech Manufacturing Ventures' External Collaborations on the Management Performance: Focusing on the Mediation Effect of Internal Core Competencies (첨단제조 벤처기업의 외부적 협력활동 경험이 경영성과에 미치는 영향에 관한 연구: 내부 핵심역량의 매개효과를 중심으로)

  • Lee, Younghun;Song, Eugene
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.16 no.6
    • /
    • pp.69-84
    • /
    • 2021
  • As industrial structural changes in the 4th Industrial Revolution have recently led to the need for fostering high-tech industries and high-tech manufacturing industries have been showing high value-added creation, the importance of high-tech manufacturing ventures has increased a lot as well. As a result of this, the government is actively supporting and fostering them. However, it appears that high-tech manufacturing ventures seem to have a lot of difficulty in securing competitive advantages due to the lack of internal core competencies and experience in the rapidly changing international economic conditions. In order for high-tech manufacturing ventures to strengthen internal core competencies, external collaborations with other companies or institutions which have diverse experience, technology skills and abundant resources are actively promoted. Accordingly, based on resource-based theory and transaction cost theory, the authors analyzed the effects of the high-tech manufacturing ventures'external collaborations on internal core competencies and management performance in this study. In order to verify the hypothesis of this study, the 2020 data on"The Research on the Precision Status of Ventures'compiled by the Ministry of SMEs and Startups since 1999 were utilized. According to the results of this study, the experience of external collaborations had a positive impact on the internal core competencies and non-financial management performance, while there was no direct impact on financial management performance. Moreover, the relationship between the experience of external collaborations and management performance is mediated by the internal core competencies. Additionally, it was found that the internal core competencies positively affected both non-financial and financial management performances, and non-financial management performance again had a significant impact on the financial management performance. Finally, the experience of external collaborations had a positive impact on both development, manufacturing, and marketing factors forming the internal core competencies. However, the impacts of individual factors were different in the management performance. Development and marketing factors were shown to have a significant impact on both non-financial and financial management performance, while the manufacturing factor had a significant impact only on financial management performance.

A Study on Auditor Designation System (감사인 지정제도에 관한 연구)

  • Kim, Ye-Kyoung;Hong, Hyo Seog
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.479-490
    • /
    • 2021
  • As a part of Korean accounting reforms through the improvement of the accounting and audit related systems, the amendment bill of 'Act on External Audit of Stock Compamies's was passed in the Natinal Assembly plenary session in 2017, the amended act has been enforced except some regulations since the business year on November 1, 2018, and all the amended matters will be applied from the business year of 2024. The reasons for auditor designation in 2019 are 'pre-IPO' 331 companies, 220 periodic designation companies, 197 companies that had operating loss for three consecutive years, 112 companies with issues for administration, 108 companies with excessive debt ratio and 66 companies with no auditors. Regarding the reasons for the increase of auditor designation, 475 companies were increased in accordance with the new designation standard by the amended bill of Act on External Audit of Stock Companies, 114 companies were increased due to the abolition of the considered designation system of companies to be listed, and 90 companies were increased based on the increase of listed companies incorporated to issues for administration. In 2020, 462 companies had periodical designation (434 listed, 28 non-listed), adding 242 companies (110%) over a year. In terms of direct designation, 'pre-IPO' accounted for the most (362 companies), followed by '3 consecutive years of operating loss' (245 companies), then by companies with administration issues (133 companies), and CEO & largest sharholder replacement. Regarding the designation of auditors according to accounting firms in 2020, A group that includes(top 4) accounting firms(Samil, Samjeong, Hanyeong, Anjin) had 526 companies(34.6%), which ia an incease of 72 companies from the previous year(454 companies, 37.1%), but the weight decreased by 2.5%.

A Study of Measures to Support Startup Company Development: Focusing on DeepTech Startups (스타트업 기업 육성지원 방안 연구: 딥테크(DeepTech) 스타트업을 중심으로)

  • Chang-Kyu Lee;SungJoo Hwang;Hui-Teak Kim
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.19 no.2
    • /
    • pp.63-79
    • /
    • 2024
  • The startup ecosystem is experiencing a paradigm shift in founding due to the acceleration of digital transformation, online platform companies have grown significantly into unicorns, but the lack of differentiated approaches and strategic support for deep tech startups has led to the inactivity of the startup ecosystem. is lacking. Therefore, in this study, we proposed ways to develop domestic startup development policies, focusing on the US system, which is an advanced example overseas. Focusing on the definition and characteristics of deep tech startups, current investment status, success stories, support policies, etc., we comprehensively analyzed domestic and international literature and derived suggestions. In particular, he proposed specific ways to improve support policies for domestic deep tech startups and presented milestones for their development. Currently, the United States is significantly strengthening the role of the government in supporting deep tech startups. The US government provides direct financial support to deep tech startups, including detergent support and infrastructure support. It has also established policies to foster deep tech startups, established related institutions, and systematized support. It is worth noting that US universities play a core role in nurturing deep tech startups. Leading universities in the United States operate deep tech startup discovery and development programs, providing research and development infrastructure and technology. It also works with companies to provide co-investment and commercialization support for deep tech startups. As a result, the growth of domestic deep tech startups requires the cooperation of diverse entities such as the government, universities, companies, and private investors. The government should strengthen policy support, and universities and businesses should work together to support R&D and commercialization capabilities. Furthermore, private investors must stimulate investment in deep tech startups. Through such efforts, deep tech startups are expected to grow and Korea's innovation ecosystem will be revitalized.

  • PDF

A Study on Web-based Technology Valuation System (웹기반 지능형 기술가치평가 시스템에 관한 연구)

  • Sung, Tae-Eung;Jun, Seung-Pyo;Kim, Sang-Gook;Park, Hyun-Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.23-46
    • /
    • 2017
  • Although there have been cases of evaluating the value of specific companies or projects which have centralized on developed countries in North America and Europe from the early 2000s, the system and methodology for estimating the economic value of individual technologies or patents has been activated on and on. Of course, there exist several online systems that qualitatively evaluate the technology's grade or the patent rating of the technology to be evaluated, as in 'KTRS' of the KIBO and 'SMART 3.1' of the Korea Invention Promotion Association. However, a web-based technology valuation system, referred to as 'STAR-Value system' that calculates the quantitative values of the subject technology for various purposes such as business feasibility analysis, investment attraction, tax/litigation, etc., has been officially opened and recently spreading. In this study, we introduce the type of methodology and evaluation model, reference information supporting these theories, and how database associated are utilized, focusing various modules and frameworks embedded in STAR-Value system. In particular, there are six valuation methods, including the discounted cash flow method (DCF), which is a representative one based on the income approach that anticipates future economic income to be valued at present, and the relief-from-royalty method, which calculates the present value of royalties' where we consider the contribution of the subject technology towards the business value created as the royalty rate. We look at how models and related support information (technology life, corporate (business) financial information, discount rate, industrial technology factors, etc.) can be used and linked in a intelligent manner. Based on the classification of information such as International Patent Classification (IPC) or Korea Standard Industry Classification (KSIC) for technology to be evaluated, the STAR-Value system automatically returns meta data such as technology cycle time (TCT), sales growth rate and profitability data of similar company or industry sector, weighted average cost of capital (WACC), indices of industrial technology factors, etc., and apply adjustment factors to them, so that the result of technology value calculation has high reliability and objectivity. Furthermore, if the information on the potential market size of the target technology and the market share of the commercialization subject refers to data-driven information, or if the estimated value range of similar technologies by industry sector is provided from the evaluation cases which are already completed and accumulated in database, the STAR-Value is anticipated that it will enable to present highly accurate value range in real time by intelligently linking various support modules. Including the explanation of the various valuation models and relevant primary variables as presented in this paper, the STAR-Value system intends to utilize more systematically and in a data-driven way by supporting the optimal model selection guideline module, intelligent technology value range reasoning module, and similar company selection based market share prediction module, etc. In addition, the research on the development and intelligence of the web-based STAR-Value system is significant in that it widely spread the web-based system that can be used in the validation and application to practices of the theoretical feasibility of the technology valuation field, and it is expected that it could be utilized in various fields of technology commercialization.

The Impact of Collective Guilt on the Preference for Japanese Products (집체범죄감대경향일본산품적영향(集体犯罪感对倾向日本产品的影响))

  • Maher, Amro A.;Singhapakdi, Anusorn;Park, Hyun-Soo;Auh, Sei-Gyoung
    • Journal of Global Scholars of Marketing Science
    • /
    • v.20 no.2
    • /
    • pp.135-148
    • /
    • 2010
  • Arab boycotts of Danish products, Australian boycotts of French products and Chinese consumer aversion toward Japanese products are all examples of how adverse actions at the country level might impact consumers' behavior. The animosity literature has examined how consumers react to the adverse actions of other countries, and how such animosity impacts consumers' attitudes and preferences for products from the transgressing country. For example, Chinese consumers are less likely to buy Japanese products because of Japanese atrocities during World War II and the unjust economic dealings of the Japanese (Klein, Ettenson and Morris 1998). The marketing literature, however, has not examined how consumers react to adverse actions committed by their own country against other countries, and whether such actions affect their attitudes towards purchasing products that originated from the adversely affected country. The social psychology literature argues that consumers will experience a feeling called collective guilt, in response to such adverse actions. Collective guilt stems from the distress experienced by group members when they accept that their group is responsible for actions that have harmed another group (Branscombe, Slugoski, and Kappenn 2004). Examples include Americans feeling guilty about the atrocities committed by the U.S. military at Abu Ghraib prison (Iyer, Schamder and Lickel 2007), and the Dutch about their occupation of Indonesia in the past (Doosje et al. 1998). The primary aim of this study is to examine consumers' perceptions of adverse actions by members of one's own country against another country and whether such perceptions affected their attitudes towards products originating from the country transgressed against. More specifically, one objective of this study is to examine the perceptual antecedents of collective guilt, an emotional reaction to adverse actions performed by members of one's country against another country. Another objective is to examine the impact of collective guilt on consumers' perceptions of, and preference for, products originating from the country transgressed against by the consumers' own country. If collective guilt emerges as a significant predictor, companies originating from countries that have been transgressed against might be able to capitalize on such unfortunate events. This research utilizes the animosity model introduced by Klein, Ettenson and Morris (1998) and later expanded on by Klein (2002). Klein finds that U.S. consumers harbor animosity toward the Japanese. This animosity is experienced in response to events that occurred during World War II (i.e., the bombing of Pearl Harbor) and more recently the perceived economic threat from Japan. Thus this study argues that the events of Word War II (i.e., bombing of Hiroshima and Nagasaki) might lead U.S. consumers to experience collective guilt. A series of three hypotheses were introduced. The first hypothesis deals with the antecedents of collective guilt. Previous research argues that collective guilt is experienced when consumers perceive that the harm following a transgression is illegitimate and that the country from which the transgressors originate should be responsible for the adverse actions. (Wohl, Branscombe, and Klar 2006). Therefore the following hypothesis was offered: H1a. Higher levels of perceived illegitimacy for the harm committed will result in higher levels of collective guilt. H1b. Higher levels of responsibility will be positively associated with higher levels of collective guilt. The second and third hypotheses deal with the impact of collective guilt on the preferences for Japanese products. Klein (2002) found that higher levels of animosity toward Japan resulted in a lower preference for a Japanese product relative to a South Korean product but not a lower preference for a Japanese product relative to a U.S. product. These results therefore indicate that the experience of collective guilt will lead to a higher preference for a Japanese product if consumers are contemplating a choice that inv olves a decision to buy Japanese versus South Korean product but not if the choice involves a decision to buy a Japanese versus a U.S. product. H2. Collective guilt will be positively related to the preference for a Japanese product over a South Korean product, but will not be related to the preference for a Japanese product over a U.S. product. H3. Collective guilt will be positively related to the preference for a Japanese product over a South Korean product, holding constant product judgments and animosity. An experiment was conducted to test the hypotheses. The illegitimacy of the harm and responsibility were manipulated by exposing respondents to a description of adverse events occurring during World War II. Data were collected using an online consumer panel in the United States. Subjects were randomly assigned to either the low levels of responsibility and illegitimacy condition (n=259) or the high levels of responsibility and illigitemacy (n=268) condition. Latent Variable Structural Equation Modeling (LVSEM) was used to test the hypothesized relationships. The first hypothesis is supported as both the illegitimacy of the harm and responsibility assigned to the Americans for the harm committed against the Japanese during WWII have a positive impact on collective guilt. The second hypothesis is also supported as collective guilt is positively related to preference for a Japanese product over a South Korean product but is not related to preference for a Japanese product over a U.S. product. Finally there is support for the third hypothesis, since collective guilt is positively related to the preference for a Japanese product over a South Korean product while controlling for the effect of product judgments about Japanese products and animosity. The results of these studies lead to several conclusions. First, the illegitimacy of harm and responsibility can be manipulated and that they are antecedents of collective guilt. Second, collective guilt has an impact on a consumers' decision when they face a choice set that includes a product from the country that was the target of the adverse action and a product from another foreign country. This impact however disappears from a consumers' decision when they face a choice set that includes a product from the country that was the target of the adverse action and a domestic product. This result suggests that collective guilt might be a viable factor for company originating from the country transgressed against if its competitors are foreign but not if they are local.

A Study on Commodity Asset Investment Model Based on Machine Learning Technique (기계학습을 활용한 상품자산 투자모델에 관한 연구)

  • Song, Jin Ho;Choi, Heung Sik;Kim, Sun Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.4
    • /
    • pp.127-146
    • /
    • 2017
  • Services using artificial intelligence have begun to emerge in daily life. Artificial intelligence is applied to products in consumer electronics and communications such as artificial intelligence refrigerators and speakers. In the financial sector, using Kensho's artificial intelligence technology, the process of the stock trading system in Goldman Sachs was improved. For example, two stock traders could handle the work of 600 stock traders and the analytical work for 15 people for 4weeks could be processed in 5 minutes. Especially, big data analysis through machine learning among artificial intelligence fields is actively applied throughout the financial industry. The stock market analysis and investment modeling through machine learning theory are also actively studied. The limits of linearity problem existing in financial time series studies are overcome by using machine learning theory such as artificial intelligence prediction model. The study of quantitative financial data based on the past stock market-related numerical data is widely performed using artificial intelligence to forecast future movements of stock price or indices. Various other studies have been conducted to predict the future direction of the market or the stock price of companies by learning based on a large amount of text data such as various news and comments related to the stock market. Investing on commodity asset, one of alternative assets, is usually used for enhancing the stability and safety of traditional stock and bond asset portfolio. There are relatively few researches on the investment model about commodity asset than mainstream assets like equity and bond. Recently machine learning techniques are widely applied on financial world, especially on stock and bond investment model and it makes better trading model on this field and makes the change on the whole financial area. In this study we made investment model using Support Vector Machine among the machine learning models. There are some researches on commodity asset focusing on the price prediction of the specific commodity but it is hard to find the researches about investment model of commodity as asset allocation using machine learning model. We propose a method of forecasting four major commodity indices, portfolio made of commodity futures, and individual commodity futures, using SVM model. The four major commodity indices are Goldman Sachs Commodity Index(GSCI), Dow Jones UBS Commodity Index(DJUI), Thomson Reuters/Core Commodity CRB Index(TRCI), and Rogers International Commodity Index(RI). We selected each two individual futures among three sectors as energy, agriculture, and metals that are actively traded on CME market and have enough liquidity. They are Crude Oil, Natural Gas, Corn, Wheat, Gold and Silver Futures. We made the equally weighted portfolio with six commodity futures for comparing with other commodity indices. We set the 19 macroeconomic indicators including stock market indices, exports & imports trade data, labor market data, and composite leading indicators as the input data of the model because commodity asset is very closely related with the macroeconomic activities. They are 14 US economic indicators, two Chinese economic indicators and two Korean economic indicators. Data period is from January 1990 to May 2017. We set the former 195 monthly data as training data and the latter 125 monthly data as test data. In this study, we verified that the performance of the equally weighted commodity futures portfolio rebalanced by the SVM model is better than that of other commodity indices. The prediction accuracy of the model for the commodity indices does not exceed 50% regardless of the SVM kernel function. On the other hand, the prediction accuracy of equally weighted commodity futures portfolio is 53%. The prediction accuracy of the individual commodity futures model is better than that of commodity indices model especially in agriculture and metal sectors. The individual commodity futures portfolio excluding the energy sector has outperformed the three sectors covered by individual commodity futures portfolio. In order to verify the validity of the model, it is judged that the analysis results should be similar despite variations in data period. So we also examined the odd numbered year data as training data and the even numbered year data as test data and we confirmed that the analysis results are similar. As a result, when we allocate commodity assets to traditional portfolio composed of stock, bond, and cash, we can get more effective investment performance not by investing commodity indices but by investing commodity futures. Especially we can get better performance by rebalanced commodity futures portfolio designed by SVM model.

Antecedents of Manufacturer's Private Label Program Engagement : A Focus on Strategic Market Management Perspective (제조업체 Private Labels 도입의 선행요인 : 전략적 시장관리 관점을 중심으로)

  • Lim, Chae-Un;Yi, Ho-Taek
    • Journal of Distribution Research
    • /
    • v.17 no.1
    • /
    • pp.65-86
    • /
    • 2012
  • The $20^{th}$ century was the era of manufacturer brands which built higher brand equity for consumers. Consumers moved from generic products of inconsistent quality produced by local factories in the $19^{th}$ century to branded products from global manufacturers and manufacturer brands reached consumers through distributors and retailers. Retailers were relatively small compared to their largest suppliers. However, sometime in the 1970s, things began to slowly change as retailers started to develop their own national chains and began international expansion, and consolidation of the retail industry from mom-and-pop stores to global players was well under way (Kumar and Steenkamp 2007, p.2) In South Korea, since the middle of the 1990s, the bulking up of retailers that started then has changed the balance of power between manufacturers and retailers. Retailer private labels, generally referred to as own labels, store brands, distributors own private-label, home brand or own label brand have also been performing strongly in every single local market (Bushman 1993; De Wulf et al. 2005). Private labels now account for one out of every five items sold every day in U.S. supermarkets, drug chains, and mass merchandisers (Kumar and Steenkamp 2007), and the market share in Western Europe is even larger (Euromonitor 2007). In the UK, grocery market share of private labels grew from 39% of sales in 2008 to 41% in 2010 (Marian 2010). Planet Retail (2007, p.1) recently concluded that "[PLs] are set for accelerated growth, with the majority of the world's leading grocers increasing their own label penetration." Private labels have gained wide attention both in the academic literature and popular business press and there is a glowing academic research to the perspective of manufacturers and retailers. Empirical research on private labels has mainly studies the factors explaining private labels market shares across product categories and/or retail chains (Dahr and Hoch 1997; Hoch and Banerji, 1993), factors influencing the private labels proneness of consumers (Baltas and Doyle 1998; Burton et al. 1998; Richardson et al. 1996) and factors how to react brand manufacturers towards PLs (Dunne and Narasimhan 1999; Hoch 1996; Quelch and Harding 1996; Verhoef et al. 2000). Nevertheless, empirical research on factors influencing the production in terms of a manufacturer-retailer is rather anecdotal than theory-based. The objective of this paper is to bridge the gap in these two types of research and explore the factors which influence on manufacturer's private label production based on two competing theories: S-C-P (Structure - Conduct - Performance) paradigm and resource-based theory. In order to do so, the authors used in-depth interview with marketing managers, reviewed retail press and research and presents the conceptual framework that integrates the major determinants of private labels production. From a manufacturer's perspective, supplying private labels often starts on a strategic basis. When a manufacturer engages in private labels, the manufacturer does not have to spend on advertising, retailer promotions or maintain a dedicated sales force. Moreover, if a manufacturer has weak marketing capabilities, the manufacturer can make use of retailer's marketing capability to produce private labels and lessen its marketing cost and increases its profit margin. Figure 1. is the theoretical framework based on a strategic market management perspective, integrated concept of both S-C-P paradigm and resource-based theory. The model includes one mediate variable, marketing capabilities, and the other moderate variable, competitive intensity. Manufacturer's national brand reputation, firm's marketing investment, and product portfolio, which are hypothesized to positively affected manufacturer's marketing capabilities. Then, marketing capabilities has negatively effected on private label production. Moderating effects of competitive intensity are hypothesized on the relationship between marketing capabilities and private label production. To verify the proposed research model and hypotheses, data were collected from 192 manufacturers (212 responses) who are producing private labels in South Korea. Cronbach's alpha test, explanatory / comfirmatory factor analysis, and correlation analysis were employed to validate hypotheses. The following results were drawing using structural equation modeling and all hypotheses are supported. Findings indicate that manufacturer's private label production is strongly related to its marketing capabilities. Consumer marketing capabilities, in turn, is directly connected with the 3 strategic factors (e.g., marketing investment, manufacturer's national brand reputation, and product portfolio). It is moderated by competitive intensity between marketing capabilities and private label production. In conclusion, this research may be the first study to investigate the reasons manufacturers engage in private labels based on two competing theoretic views, S-C-P paradigm and resource-based theory. The private label phenomenon has received growing attention by marketing scholars. In many industries, private labels represent formidable competition to manufacturer brands and manufacturers have a dilemma with selling to as well as competing with their retailers. The current study suggests key factors when manufacturers consider engaging in private label production.

  • PDF

An Intelligent Decision Support System for Selecting Promising Technologies for R&D based on Time-series Patent Analysis (R&D 기술 선정을 위한 시계열 특허 분석 기반 지능형 의사결정지원시스템)

  • Lee, Choongseok;Lee, Suk Joo;Choi, Byounggu
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.79-96
    • /
    • 2012
  • As the pace of competition dramatically accelerates and the complexity of change grows, a variety of research have been conducted to improve firms' short-term performance and to enhance firms' long-term survival. In particular, researchers and practitioners have paid their attention to identify promising technologies that lead competitive advantage to a firm. Discovery of promising technology depends on how a firm evaluates the value of technologies, thus many evaluating methods have been proposed. Experts' opinion based approaches have been widely accepted to predict the value of technologies. Whereas this approach provides in-depth analysis and ensures validity of analysis results, it is usually cost-and time-ineffective and is limited to qualitative evaluation. Considerable studies attempt to forecast the value of technology by using patent information to overcome the limitation of experts' opinion based approach. Patent based technology evaluation has served as a valuable assessment approach of the technological forecasting because it contains a full and practical description of technology with uniform structure. Furthermore, it provides information that is not divulged in any other sources. Although patent information based approach has contributed to our understanding of prediction of promising technologies, it has some limitations because prediction has been made based on the past patent information, and the interpretations of patent analyses are not consistent. In order to fill this gap, this study proposes a technology forecasting methodology by integrating patent information approach and artificial intelligence method. The methodology consists of three modules : evaluation of technologies promising, implementation of technologies value prediction model, and recommendation of promising technologies. In the first module, technologies promising is evaluated from three different and complementary dimensions; impact, fusion, and diffusion perspectives. The impact of technologies refers to their influence on future technologies development and improvement, and is also clearly associated with their monetary value. The fusion of technologies denotes the extent to which a technology fuses different technologies, and represents the breadth of search underlying the technology. The fusion of technologies can be calculated based on technology or patent, thus this study measures two types of fusion index; fusion index per technology and fusion index per patent. Finally, the diffusion of technologies denotes their degree of applicability across scientific and technological fields. In the same vein, diffusion index per technology and diffusion index per patent are considered respectively. In the second module, technologies value prediction model is implemented using artificial intelligence method. This studies use the values of five indexes (i.e., impact index, fusion index per technology, fusion index per patent, diffusion index per technology and diffusion index per patent) at different time (e.g., t-n, t-n-1, t-n-2, ${\cdots}$) as input variables. The out variables are values of five indexes at time t, which is used for learning. The learning method adopted in this study is backpropagation algorithm. In the third module, this study recommends final promising technologies based on analytic hierarchy process. AHP provides relative importance of each index, leading to final promising index for technology. Applicability of the proposed methodology is tested by using U.S. patents in international patent class G06F (i.e., electronic digital data processing) from 2000 to 2008. The results show that mean absolute error value for prediction produced by the proposed methodology is lower than the value produced by multiple regression analysis in cases of fusion indexes. However, mean absolute error value of the proposed methodology is slightly higher than the value of multiple regression analysis. These unexpected results may be explained, in part, by small number of patents. Since this study only uses patent data in class G06F, number of sample patent data is relatively small, leading to incomplete learning to satisfy complex artificial intelligence structure. In addition, fusion index per technology and impact index are found to be important criteria to predict promising technology. This study attempts to extend the existing knowledge by proposing a new methodology for prediction technology value by integrating patent information analysis and artificial intelligence network. It helps managers who want to technology develop planning and policy maker who want to implement technology policy by providing quantitative prediction methodology. In addition, this study could help other researchers by proving a deeper understanding of the complex technological forecasting field.

The Effects of Environmental Dynamism on Supply Chain Commitment in the High-tech Industry: The Roles of Flexibility and Dependence (첨단산업의 환경동태성이 공급체인의 결속에 미치는 영향: 유연성과 의존성의 역할)

  • Kim, Sang-Deok;Ji, Seong-Goo
    • Journal of Global Scholars of Marketing Science
    • /
    • v.17 no.2
    • /
    • pp.31-54
    • /
    • 2007
  • The exchange between buyers and sellers in the industrial market is changing from short-term to long-term relationships. Long-term relationships are governed mainly by formal contracts or informal agreements, but many scholars are now asserting that controlling relationship by using formal contracts under environmental dynamism is inappropriate. In this case, partners will depend on each other's flexibility or interdependence. The former, flexibility, provides a general frame of reference, order, and standards against which to guide and assess appropriate behavior in dynamic and ambiguous situations, thus motivating the value-oriented performance goals shared between partners. It is based on social sacrifices, which can potentially minimize any opportunistic behaviors. The later, interdependence, means that each firm possesses a high level of dependence in an dynamic channel relationship. When interdependence is high in magnitude and symmetric, each firm enjoys a high level of power and the bonds between the firms should be reasonably strong. Strong shared power is likely to promote commitment because of the common interests, attention, and support found in such channel relationships. This study deals with environmental dynamism in high-tech industry. Firms in the high-tech industry regard it as a key success factor to successfully cope with environmental changes. However, due to the lack of studies dealing with environmental dynamism and supply chain commitment in the high-tech industry, it is very difficult to find effective strategies to cope with them. This paper presents the results of an empirical study on the relationship between environmental dynamism and supply chain commitment in the high-tech industry. We examined the effects of consumer, competitor, and technological dynamism on supply chain commitment. Additionally, we examined the moderating effects of flexibility and dependence of supply chains. This study was confined to the type of high-tech industry which has the characteristics of rapid technology change and short product lifecycle. Flexibility among the firms of this industry, having the characteristic of hard and fast growth, is more important here than among any other industry. Thus, a variety of environmental dynamism can affect a supply chain relationship. The industries targeted industries were electronic parts, metal product, computer, electric machine, automobile, and medical precision manufacturing industries. Data was collected as follows. During the survey, the researchers managed to obtain the list of parts suppliers of 2 companies, N and L, with an international competitiveness in the mobile phone manufacturing industry; and of the suppliers in a business relationship with S company, a semiconductor manufacturing company. They were asked to respond to the survey via telephone and e-mail. During the two month period of February-April 2006, we were able to collect data from 44 companies. The respondents were restricted to direct dealing authorities and subcontractor company (the supplier) staff with at least three months of dealing experience with a manufacture (an industrial material buyer). The measurement validation procedures included scale reliability; discriminant and convergent validity were used to validate measures. Also, the reliability measurements traditionally employed, such as the Cronbach's alpha, were used. All the reliabilities were greater than.70. A series of exploratory factor analyses was conducted. We conducted confirmatory factor analyses to assess the validity of our measurements. A series of chi-square difference tests were conducted so that the discriminant validity could be ensured. For each pair, we estimated two models-an unconstrained model and a constrained model-and compared the two model fits. All these tests supported discriminant validity. Also, all items loaded significantly on their respective constructs, providing support for convergent validity. We then examined composite reliability and average variance extracted (AVE). The composite reliability of each construct was greater than.70. The AVE of each construct was greater than.50. According to the multiple regression analysis, customer dynamism had a negative effect and competitor dynamism had a positive effect on a supplier's commitment. In addition, flexibility and dependence had significant moderating effects on customer and competitor dynamism. On the other hand, all hypotheses about technological dynamism had no significant effects on commitment. In other words, technological dynamism had no direct effect on supplier's commitment and was not moderated by the flexibility and dependence of the supply chain. This study makes its contribution in the point of view that this is a rare study on environmental dynamism and supply chain commitment in the field of high-tech industry. Especially, this study verified the effects of three sectors of environmental dynamism on supplier's commitment. Also, it empirically tested how the effects were moderated by flexibility and dependence. The results showed that flexibility and interdependence had a role to strengthen supplier's commitment under environmental dynamism in high-tech industry. Thus relationship managers in high-tech industry should make supply chain relationship flexible and interdependent. The limitations of the study are as follows; First, about the research setting, the study was conducted with high-tech industry, in which the direction of the change in the power balance of supply chain dyads is usually determined by manufacturers. So we have a difficulty with generalization. We need to control the power structure between partners in a future study. Secondly, about flexibility, we treated it throughout the paper as positive, but it can also be negative, i.e. violating an agreement or moving, but in the wrong direction, etc. Therefore we need to investigate the multi-dimensionality of flexibility in future research.

  • PDF