• Title/Summary/Keyword: Internal-Mixing

Search Result 302, Processing Time 0.03 seconds

Outflow Characteristics of Nakdong River Plume (낙동강수의 유출특성에 관한 연구)

  • 김기철;김재중;김영의;한건모;최광규;장성태
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.4
    • /
    • pp.305-313
    • /
    • 1996
  • CTD measurements were conducted in the Nakdong estuary on the several sections or along-plume and cross-plume directions in 1993 and 1994. Internal Froude number Fi=0.22-0.35 in ebb tides and 0.14 in flood tides suggest that Nakdong river plume may go farther seawards in the along-plume direction with little mixing with the adjacent sea water after the construction of Nakdong river barrier. From Dadae-Po to Gaduk-Do section of cross-plume direction, three cores of low salinity were found. The main plume outflows from the newly made channel by cutting Ulsuk-Do after the construction of barrier. The low salinity core found near Gaduk-Do is the plume patch advected by tidal currents. Rossby deformation radius varied with the tidal cycle so that Coriolis effect is strengthened in flood tides to deepen the isohalines westwards to the Gaduk-Do site. Internal wavelike shape was found in the section of cross-plume direction during ebb tides. Richardson number of the section suggests the possibility of forming internal wave but more precise observations are necessary.

  • PDF

Analysis of Solar Energy Storage Using Effectiveness on Single Span Plastic Greenhouse with Water Curtain System (수막재배 단동비닐하우스의 태양열 축열이용 효과분석)

  • Lee, S.H.;Ryou, Y.S.;Moon, J.P.;Yun, N.K.;Lee, S.J.;Kim, K.W.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.200.2-200.2
    • /
    • 2010
  • This study was carried out in order to reduce the amount of underground water which is used in the water curtain system for retaining heat. To proceed to the research, two plastic green houses of water curtain system were installed. One was equipped of internal small tunnel for keeping warm air in the interior of the house. Then the internal small tunnel for keeping warm air was fitted with PVC duct of 50cm in diameter filled with subsurface water. Storing surplus solar energy in the water filled in PVC duct was the method used to this house. Another was installed with FCU in the middle of the house, and was fitted a circulation motor in water tank for heat storage which was operated from 10 a.m. to 4 p.m. in order to interchange heat with FCU. The latter was installed with four FCUs which has a capacity of 8000kcal per hour. Consequently about 5 degrees celsius could be maintained in the interior of the internal small tunnel for keeping warm air with the external temperature of more than minus 5 degrees celsius. It appeared that the alteration of an internal temperature of the house was flexible depending on the sunlight during daytime. It happened that to prevent the water from freezing, mixing antifreezing liquid in the flowing water of FCU or changing the operating method of FCU was a suitable measure. Also, in order to use the surplus solar thermal energy on plastic green house of water curtain system efficiently, storing the surplus heat during daytime simultaneously finding a method of using water curtain systematic underground water happened to be important. As a result of this research, when the house's interior temperature is below zero the operation of FCU appeared to be impossible. Therefore when supposed that the amount of water used in the house is 150~200ton for stable operation of FCU, using the system mentioned in the above research happened to be appropriate of reducing the amount of subsurface water from 80% to 100% when maintaining the interior of internal small tunnel's temperature for keeping warm air of 5 degrees celsius at the extreme temperature of minus 5 degrees celsius.

  • PDF

Study on the Trend of Domestic and International Research about Convergence in Korean Medicine (한의학 융합 연구와 관련된 국내외 연구 동향 고찰)

  • Park, Hye Lim;Hong, Min-na;Cho, Jae Hyun;Choi, Jun Yong;Kim, Nam Kwen;Park, Jae Min;Park, Jin Soo;Lee, Dong Woo;Baek, Kyu Hwan;Lee, In
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.29 no.4
    • /
    • pp.313-321
    • /
    • 2015
  • The purpose of this study is to analyze differences between domestic and international research about convergence in Korean medicine (KM) and to find plans to facilitate further convergence. Articles published from 1995 to 2015 were searched on domestic database, NDSL and international database, PUBMED using the keyword concerning to five subjects (device, treatment, education, drug, effect and mechanism). Two authors checked independently searched articles to decide inclusion on the analysis and the stage of convergence, and made a conclusion through discussion. 58 and 27 articles were included in domestic and international research respectively on five subjects mentioned above. Articles in treatment and effect and mechanism were the most in domestic (62%) and international research (37%) individually. On the stage of convergence (It is divided by the degree of mixing between resource, experience, and theory of KM and other fields of study), most of articles were included in the first and second stage in domestic (62%) and international research (85%) respectively. Domestic and international research had different characteristics on the main subjects as well as the stage of convergence. It is needed that more active research and realistic application to facilitate further convergence.

Solar Energy Storage Effectiveness on Double Layered Single Span Plastic Greenhouse (2중 단동비닐하우스의 태양열 축열이용 효과)

  • Lee, Sung-Hyoun;Ryou, Young-Sun;Moon, Jong-Pil;Yun, Nam-Kyu;Kwon, Jin-Kyung;Lee, Su-Jang;Kim, Kyeong-Won
    • Journal of Biosystems Engineering
    • /
    • v.36 no.3
    • /
    • pp.217-222
    • /
    • 2011
  • This study was carried out in order to reduce the amount of underground water which is used in the double layered single span plastic greenhouse for retaining heat. For this research, two plastic green houses of the double layered single span plastic greenhouse were installed. There was equipped of internal small tunnel for keeping warm air in the interior of the house. Then the internal small tunnel for keeping warm air was fitted with PVC duct of 50 cm in diameter filled with subsurface water. The surplus solar energy in the greenhouse was stored in the water in the PVC duct. Four FCUs (Fan Coil Unit), which has the capacity of 8,000 kcal per hour, were installed in the middle of the house, and a circulation motor in heat storage water tank was operated from 10:30 a.m. to 16:00 p.m. in order to circulate water between the water tank and the FCUs. Consequently about 5 degrees celsius could be maintained in the interior of the internal small tunnel for keeping warm air with the external temperature of lower than minus 5 degrees celsius. It appeared that the alteration of an internal temperature of the house was flexible depending on the sunlight during daytime. To prevent the water freezing, mixing antifreezing liquid in the water or operating FCU continuously was needed. Also, in order to use the surplus solar thermal energy on plastic green house of water curtain system efficiently, storing the surplus heat during daytime simultaneously finding a method of using water curtain systematic underground water happened to be important. As a result of this research, when the house's interior temperature is below zero the operation of FCU appeared to be impossible. Considering the amount of water used in the house with water-curtain-heating system is 150~200 ton per day, using the system mentioned in this research showed that reducing the underground water more than 80% in order to maintain the internal temperature as the level of 5 degree celsius at the extreme temperature of minus 5 degrees celsius.

Characteristics of Shear Strength for Recycled Fine Aggregates Mixed Soil (순환잔골재 혼합토의 전단강도 특성)

  • Im, Weulsook;Kwon, Jeunghoon;Kim, Minwook;Kim, Youngmuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.6
    • /
    • pp.47-55
    • /
    • 2010
  • The recycled fine aggregates were mixed with weathered granite soils typically used for fill materials and tested engineering properties, physical properties, and compaction characteristics according to the mixing ratio of the mixed soils. The results of this study were as follows. For the results of A-type compaction test, the recycled fine aggregates showed low effects compared to the weathered soils, but the mixed soils which were mixed with the weathered granite soils and the recycled fine aggregates showed good compaction effects. Especially, the mixing ratio of 70:30 by weight showed for maximum compaction result. From the results of the direct shear test, the cohesion was ince csed according to proportion of the weathered granite soils. The weathered granite soils neared the optimum moisture content showed for maximum shear strength paramcoers, while the cohesion of the mixed soil was relatively ince csed in the wet side of the optimum moisture content. This trend was seemed to remained cence composition in the recycled fine aggregates. The internal friction angle of the recycled fine aggregates and the mixed soils showed maximum value near dry side of the optimum moisture contents. And the internal friction angles of the mixed soils were increased according to higher proportion of the recycled fine aggregates.

The Case Study on Risk Assessment and Probability of Failure for Port Structure Reinforced by DCM Method (심층혼합처리공법이 적용된 항만 구조물의 파괴확률과 위험도 평가에 관한 사례 연구)

  • Kim, Byung Il;Park, Eon Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.53-64
    • /
    • 2018
  • In this study, the evaluation to probability of failure for risk assessment of port structures on DCM reinforced soils, where stability and risk assessment are increasing in importance, was performed. As a random variables affecting the risk of DCM improved ground, the design strength, superposition (overlap) of construction, strength of the natural ground, internal friction angle and unit weight of the modified ground were selected and applied to the risk assessment. In addition, the failure probability for the entire system under ordinary conditions and under earthquake conditions were analyzed. As a result, it was found that the highest coefficient of variation in the random variable for the risk assessment of the DCM improved ground is the design strength, but this does not have a great influence on the safety factor, ie, the risk of the system. The main risk factor for the failure probability of the system for the DCM reinforced soils was evaluated as horizontal sliding in case of external stability and compression failure in case of internal stability both at ordinary condition and earthquake condition. In addition, the failure probability for ordinary horizontal sliding is higher than that for earthquake failure, and the failure probability for ordinary compression failure is lower than that for earthquake failure. The ordinary failure probability of the entire system is similar to the failure probability on earthquake condition, but in this case, the risk of earthquake is somewhat higher.

Use of Real-Time PCR and Internal Standard Addition Method for Identifying Mixed Ratio of Chicken Meat in Sausages (Real-Time PCR과 Internal Standard Addition법을 이용한 돼지고기 소시지에 혼합된 닭고기의 정량)

  • Lee, Namrye;Joo, Jae-Young;Yeo, Yong-Heon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.9
    • /
    • pp.1097-1105
    • /
    • 2017
  • This study examined how much chicken meat was in sausage made with pork. Both real-time polymerase chain reaction (PCR) and internal standard addition were used. Fifty ng of chicken DNA was added to the sausages as an internal standard. The addition of standard DNA increased the amplification efficiency of PCR and confirmed the possibility of quantitative analysis. A QIAamp DNA Micro Kit was used to improve the DNA recovery and amplification efficiency. The density of template DNA and primer were suitable for $3.0{\sim}5.0{\mu}L$ and $0.5{\mu}L$, respectively. Each DNA of pig and chicken was diluted in 10-fold from steps 50 ng to 0.05 ng. The detection limit of both pig and chicken meat was more than 0.05 ng and the correlation coefficient of the standard curve was at least 0.98. The result of the quantitative analysis after heat treatment of 3 samples of pigs and chickens mixed at 70:30 showed a 5.7% difference (64.3:35.7) between the expected value and measured value. The quantitative value was changed by affecting the DNA according to the heat treatment ($70^{\circ}C$, 10 min). An analysis of the pork and chicken content in sausages showed that it was difficult to detect chicken meat and the quantitative value of DNA according to the Ct value was very low. On the other hand, when adding standard material (50 ng of chicken DNA) to the sausages, the Ct value decreased gradually with increasing chicken mixing ratio. Thus, the mixing ratio of chicken in sausages could be estimated.

A Study on Effects of Axial Gas Flow in the Gap and Fuel Cracking on Fission Gas Release under Power Ramping (출력 감발 조건하에서 핵분열 기체 생성물의 방출에 대한 축방향 기체 유동과 핵연료 파손의 영향에 관한 연구)

  • Han, Jin-Kyu;Yoon, Young-Ku
    • Nuclear Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.116-127
    • /
    • 1990
  • The fission gas release model used In the SPEAR-BETA fuel performance code was modified by use of effective thermal conductivity for cracked fuel and by laking Into account axial fission-gas mixing between the fuel-clad gap and the plenum. With use of this modified model the fission gas release was analyzed under various power ramping conditions of P$_{max}$ and $\Delta$.fP. Effective fuel thermal conductivity that accounts for the effect of fuel tracking was used in calculation of the fuel temperature distribution and the Internal gas pressure under power ramping conditions. Mixing and dilution effects due to axial gas flow were also considered in computing the width and the thermal conductivity of the gap. The effect of axial gas flow w3s solved by the Crank-Nicholson method. The finite difference method was used to save running time in the calculation. The present modified fission-gas release model was validated by comparing its predicted results with experimental data from various lamping tests In the literature and calculated results with use of the models used In the SPEAR-BETA and FEMAXI-IV codes. Results obtained with use of the present modified model showed better agreement with experimental data reported in the literature than those results with use of the latter codes. The fuel centerline temperature calculated with introduction of effective thermal conductivity for centerline temperature calculated with Introduction of effective thermal conductivity for cracked fuel was 200 higher fission gas release predicted with use of the modified model was nearly 6% larger on the average than that calculated by use of the unmodified model used in the SPEAR-BETA code.e SPEAR-BETA code.e.

  • PDF

Effects of Sterilization Temperatures and Internal Air Volumes of a Pouch on the Quality of Retort Rice (살균온도 및 포장재내 공기량이 레토르트 쌀밥의 품질에 미치는 영향)

  • Koh, Ha-Young;Park, Moo-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.150-154
    • /
    • 1990
  • Various sterilization temperatures $(110^{\circ}C,\;120^{\circ}C,\;130^{\circ}C)$ and air volumes (air, 31ml, half-vacuum; 13ml, vacuum; -0.7ml) within the retort pouch were tested for the development of the simple retort rice processing techniques in which the pouch were filled with rice and water, and then sterilized. Water content of retort rice was found to be 59.0-63.3% resulting from mixing the rice and water in the ratio of 1:1.1. The most uniform water content was obtained from retort rice sterilized at $130^{\circ}C$ and packaged under vacuum. The larger water content differences were observed with the increase in internal air volumes within the retort pouch. Spreading degree of retort rice was geater than that of general cooked rice, was lower in upper layer than in low layer, and became lower with the larger air volume and higher sterilization temperature. a degree of rice became higher with the Increase of sterilization temperature but that was not affected by the internal air volume of the pouch. The higher sterilization temperature and the lower the air volume, the higher the whiteness was. The highest whiteness was obtained by packaging under vacuum and sterilizing at $130^{\circ}C$. Intact degree was much higer in packaging under air than vacuum. In sensory evaluation the retort rice of vacuum pack was good in color and spreading degree but not in appearance because of blocking and deforming, but that of air pack was good in texture on the contrary. The best quality was obtained by packaging under half-vacuum and sterilizing at $130^{\circ}C$.

  • PDF

Effect of steel fibers on surface electric resistivity of steel fiber reinforced concrete for shield segment (강섬유보강 콘크리트 세그먼트의 강섬유가 표면전기저항에 미치는 영향)

  • Moon, Do-Young;Lee, Gyu-Phil;Chang, Soo-Ho;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.6
    • /
    • pp.557-569
    • /
    • 2011
  • Steel Fiber Reinforced Concrete (SFRC) is widely used for tunnel structures such as shotcrete and segments. Corrosion of steel fibers and steel reinforcements may affect on the long-term durability of the concrete structures with steel fibers and reinforcement. Therefore, a study on the feasible method to evaluate corrosion possibility and permeability of the concrete structures is required. This experimental study examines the effect of steel fibers and internal reinforcement on the surface resistivity. Steel fiber mix ratio and corrosion of internal reinforcement were considered as variables. In the results, steel fibers significantly reduce the surface resistivity due to those conductive characteristic. In the case of 3% mix ratio, it was difficult to evaluate rate and permeability of corrosion due to the great reduction of resistivity by mixing of steel fibers.