• Title/Summary/Keyword: Internal strain measurement

Search Result 42, Processing Time 0.026 seconds

Measurement of Residual and Internal Strain of 3-D Braided Hybrid Composite using Embedded FBG Sensor (FBG 센서를 삽입한 3차원 브레이드 하이브리드 복합재료의 잔류변형률 및 내부변형률 측정)

  • Jung, Kyung-Ho;Kim, Don-Gun;Kang, Tae-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.21-24
    • /
    • 2005
  • Three dimensional circular braided Glass/Aramid hybrid fabric/epoxy resin composite was fabricated. FBG sensor was embedded along the braid yam in order to monitor the internal dimensional changes of the 3-D braid composite. The amount of cure and thermal shrinkage of epoxy resin was also determined using FBG sensor system. FBG sensors with different grating length were embedded and their response were compared. The thermo-optic coefficient of FBG sensor was measured by several preliminary experiments. The internal strain that measured by FBG sensor and electric strain gauge was compared during compressive test. The released residual strain of the fabricated tubular composite was estimated using cutting method. The internal strain of the composite was estimated using FBG sensor system, and the result was compared with the value from electric strain gauge. It was found that FBG sensor system is a very useful technique to investigate inside region of complicated structure.

  • PDF

The measurement of the internal strain of a concrete specimen using optical fiber interferometric sensors (광섬유 간섭계 센서를 이용한 콘크리트 구조물의 내부 스트레인 측정)

  • Lee, Kyung-Jin;Park, Jae-Hee;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.304-309
    • /
    • 2001
  • A Fiber optic strain sensor for the measurement of the internal strain of a concrete specimen was developed. This sensor was a 11 mm Fiber-optic Fabry-Perot interferometer attached inside a stainless steel pipe of 2 mm diameter. The fabricated strain sensors were embedded in a reinforced concrete structure of $100{\times}100{\times}500\;mm^3$ size and were measured the internal strain of a concrete structure when the external pressure was applied to the structure. For a field application, the strain sensors were attached on the bottom of a real bridge and dynamic loading test were executed. In the test, they showed good sensitivity as a deformation sensor and capability of remote monitoring.

  • PDF

Comparative study on stress distribution around internal tapered connection implants according to fit of cement- and screw-retained prostheses

  • Lee, Mi-Young;Heo, Seong-Joo;Park, Eun-Jin;Park, Ji-Man
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.3
    • /
    • pp.312-318
    • /
    • 2013
  • PURPOSE. The aim of this study was to compare the passivity of implant superstructures by assessing the strain development around the internal tapered connection implants with strain gauges. MATERIALS AND METHODS. A polyurethane resin block in which two implants were embedded served as a measurement model. Two groups of implant restorations utilized cement-retained design and internal surface of the first group was adjusted until premature contact between the restoration and the abutment completely disappeared. In the second group, only nodules detectable to the naked eye were removed. The third group employed screw-retained design and specimens were generated by computer-aided design/computer-aided manufacturing system (n=10). Four strain gauges were fixed on the measurement model mesially and distally to the implants. The strains developed in each strain gauge were recorded during fixation of specimens. To compare the difference among groups, repeated measures 2-factor analysis was performed at a level of significance of ${\alpha}$=.05. RESULTS. The absolute strain values were measured to analyze the magnitude of strain. The mean absolute strain value ranged from 29.53 to 412.94 ${\mu}m/m$ at the different strain gauge locations. According to the result of overall comparison, the cement-retained prosthesis groups exhibited significant difference. No significant difference was detected between milled screw-retained prostheses group and cement-retained prosthesis groups. CONCLUSION. Within the limitations of the study, it was concluded that the cement-retained designs do not always exhibit lower levels of stress than screw-retained designs. The internal adjustment of a cement-retained implant restoration is essential to achieve passive fit.

Measurement of Near Field Sound Intensity and Loss Factor Using Plate Intensity Measurement (평판 인텐시티 측정을 통한 근접장 음향 인텐시티와 손실 계수 측정법)

  • 김용조;김양한
    • Journal of KSNVE
    • /
    • v.7 no.4
    • /
    • pp.589-596
    • /
    • 1997
  • A energy equation for a thin plate and surrounding fluid is derived. The equation essentially determines the relation between internal loss of thin plate, energy of acoustic radiation, and structure intensity. We attempted to use this relation to measure internal loss of thin plate. The significance of this approach is that internal loss at any point of a thin plate can be measured. The quality of this measure is dicated by the accuracy of associated measurement systems such as structure and acoustic intensity measurements. A strain gauge bridge system has been developed to measure structure intensity of thin plate. Its performance is tested by experiments.

  • PDF

Strain Distribution Measurement for Wall Thinning Defect in Pipe Bends by ESPI (ESPI 를 이용한 곡관 감육 결함부의 변형률 분포 측정)

  • Naseem, Akhter;Kim, Koung-Suk;Jung, Sung-Wook;Park, Jong-Hyun;Choi, Jung-Suk;Jung, Hyun-Chul
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.120-125
    • /
    • 2007
  • Put Abstract text here The strain distribution measurement for wall thinned pipe bends by ESPI is presented. Defect types observed in the steel piping in the nuclear power plants (NPP) are the crack at the weld part and the wall thinning defect in the pipe bends. Especially, the wall thinning defects in the pipe bends due to the flow-accelerated corrosion (FAC) is a main type of defects observed in the carbon steel piping system. ESPI is one of the optical non-destructive testing methods and can measure the stress and the strain distribution of the object subjected by the tensile loading or the internal pressure. In this paper, the strain distribution of the wall thinned pipe bends due to the internal pressure will be measured by ESPI technique and the results are discussed. From the results, the size of the wall thinning defect can also be measured approximately.

  • PDF

The Design of Filter for Hearth Liquid Level Estimation in Blast Furnace (고로 용융물 레벨 변화 추정을 위한 디지털 필터 설계)

  • Cho, Nae-Soo;Han, Mu-Ho;Kwon, Woo-Hyen;Choi, Youn-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.75-81
    • /
    • 2012
  • Optimizing the tapping time of a blast furnace is important to a stable operation and life extension. To optimize the tapping time of the blast furnace, the location of Hearth Liquid Level should be recognized. There are several ways to measure the hearth liquid level in the blast furnace, such as Electromotive Force(EMF) measurement, pressure measurement by putting in nitrogen probe and manometry with strain gauge. In this paper, it will be discussed using strain gauge among the three methods. Conventional strain gauge must be revised periodically. Since, internal pressure, temperature of internal refractory material and wind pressure have effect on the strain gauge. However, static pressure value is required to compensate. To solve these problems, this paper suggests finding relationship between Hearth Liquid Level and strain gauge output, adding digital filter in strain gauge. Using the proposed method, it was possible to estimate the hearth liquid level and determine the appropriate tapping time. Usefulness of the proposed method through simulations and experimental results are confirmed.

Measurement of Aluminum Liner Internal Defect Deformation and Strain Using Shearography and FEM Verification (Shearography를 이용한 Aluminum Liner 내부 결함의 변형량과 변형율 측정 및 FEM 검증)

  • Choi, In-Young;Hong, Kyung-Min;Ko, Kwang-Su;Kang, Young-June
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.686-692
    • /
    • 2013
  • Today, environmental issues have become a matter of worldwide concern. In particular, automobile industries engage in considerable research and investment to develop high-efficiency and ecofriendly cars. Most ecofriendly cars use natural gas or hydrogen gas instead of fossil fuels. In this regard, low-weight and high-pressure vessels have gradually been developed to increase the driving distance of a car. However, most pressure vessels installed in cars develop many defects over time owing to shocks sustained when the car is being driven. Such defects can cause the explosion of the pressure vessel. Therefore it is important to prevent such explosions due to internal defects. The use of shearography for measuring the internal defects of objects afford many advantages. It is a non-contact and non-destructive method, and it is not limited by the object shape. In this study, the internal defect deformation and strain of an aluminum liner that is used in a CNG bus for the fuel storage tank is measured using shearography. It is important to measure the strain and deformation in order to detect defects and repair the pressure vessel. To verify the accuracy of the shearography measurement method, the measurement results of shearography, out-of-plane ESPI, and FEM are compared quantitatively.

The Study on the Simple Measurement by Using the Strain Gauge at Dam Dynamic Behavior Analysis (댐 거동 분석에서의 Strain Gauge를 이용한 단일 계측에 관한 연구)

  • Lee, Seungho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.1
    • /
    • pp.5-11
    • /
    • 2007
  • Internal stress variation in the face slab concrete induced by reservoir water pressure may affect on the stability of the dam so that the reclamation type of strain gauge is applied for measuring internal stress variation. In this study, internal as well as external stress variation of dam was measured by using strain gauge that was reclaimed to the ${\circ}{\circ}$ dam. In the result, it was confirmed that other measurements by relevant gauges need to be supplemented as the use of strain gauge only is insufficient to evaluate the stability analysis and global behavior of the dam.

  • PDF

Damping Property Measurement of Damping Alloy by Dynamic Strain Gage (Dynamic Strain Gage를 이용한 제진합금의 제진특성 측정)

  • Lee, Gyu-Hwan;Jo, Gwon-Gu;Lee, Bong-Jik;Sim, Myeong-Cheol
    • Korean Journal of Materials Research
    • /
    • v.4 no.5
    • /
    • pp.502-509
    • /
    • 1994
  • New damping measurement equipment was designed using the dynamic strain gage and high speed analog to digital signal 12 bit converter and compared it with existing equipment. The damping properties of general material and high damping material were also studied by this machine. The SDC (specific damping capacity) was measured with various heat treatment condition, initial vibration amplitude and internal stress. The vibration amplitude of high damping material is decreased within nearly less than 0.4 second after applying the initial forced vibration. But that of general material is still vibrating at the same time. After furnace-cooling heat treatment, SDCmax of Fe-lGwt.%Cr system was more than 40% and that of Fe-5.5wt.%Al alloy was more than 30% after air-cooling heat treatment. Upon increasing of initial vibration amplitude, it is detected the migration of SDCmax into the region of small vibraton amplitude. Damping capacity is decreased rapidly as the internal stress Increases. Damping measurement equipment in the present study was ahln to give the more accurate results of damping properties in the small vibration amplitude region.

  • PDF

Measurement and Assessment on the Shaft Power Measurement of Diesel Engine using Strain Gauge in Marine Vessel (선박에서 스트레인 게이지를 이용한 디젤엔진의 축 동력 측정과 평가)

  • Lee, Don-Chool;Song, Myong-Ho;Kim, Sang-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1152-1161
    • /
    • 2009
  • The power measurement of main propulsion system on the new vessels can be classified with the direct method acquired from the shaft's strain using strain gauge and the indirect method converted and summed from all of cylinders combustion pressure using mechanical or electrical pickup device during the sea trial. This power is fluctuated by external factors which was influenced by various sea motions with long time interval and by internal factors which was influenced by varying torques of torsional vibration and bending moment, due to mis-aligned shaft and whirling vibration with short time interval. In this paper, the statistical analysis method for the shaft power measurement and assessment using strain gauge in marine vessels are introduced. And these are identified by the low speed two stroke diesel engine model and four stroke medium speed diesel engine model including reduction gear.