• Title/Summary/Keyword: Internal model controller

Search Result 118, Processing Time 0.032 seconds

VLSI Architecture of General-purpose Memory Controller for Multiple Processing (다수의 프로세싱 유닛 처리를 위한 범용 메모리 제어기의 구조)

  • Lee, Yoon-Hyuk;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.12
    • /
    • pp.2632-2640
    • /
    • 2011
  • In this paper, we implemented a memory controller which can accommodate data processing blocks. The memory controller is arbitrated by the internal arbiter which receives request signals from masters and sends grant and data signals to masters. The designed memory controller consists of Master Interface, Master Arbitrator, Memory Interface, Memory accelerator. It was designed using VHDL, and verified using the memory model of SAMSING Inc. For FPGA synthesis and verification, Quartus II of ATERA Inc. was used. The target device is Cyclone II. For simulation, ModelSim of Cadence Inc was used.

Tip Position Command Tracking of a Flexible Beam Using Active Vibration Control (능동진동제어를 이용한 유연보의 끝단위치 명령추종연구)

  • Lee, Young-Sup;Elliott, Stephen-J
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.643-648
    • /
    • 2003
  • The problem considered in this paper is that the tip position of a flexible cantilever beam is controlled to follow a command signal, using a pair of piezoelectric actuators at the clamped end. The beam is lightly damped and so the natural transient response is rather long, and also since the sensor and actuator are not collocated, the plant response is non-minimum phase. Two control strategies were investigated. The first involved conventional PID control in which the feedback gains were adjusted to give the fastest closed-loop response to a step input. The second control strategy was based on an internal model control (IMC) architecture. The control filter in the IMC controller was a digital FIR device designed to minimize the expectation of the mean square tracking error. The IMC controller designed fur the beam was found to have very much reduced settling times to a step input compared with those of the PID controller.

  • PDF

Development of Constant Output Power Supply System for Ozonizer (오존발생장치용 정출력 전원장치의 개발)

  • Woo, Jung-In;Woo, Sung-Hoon;Roh, In-Bae;Park, Jee-Ho;Kim, Dong-Wan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.7
    • /
    • pp.113-121
    • /
    • 2005
  • In this paper, a constant output power supply system for ozonizer is proposed to remove the noise of ozonizer and control the output of ozonizer using feedback control. The proposed system is based on the rouble control loop such as the outer voltage control loop and inner current control loop. In the proposed system overshoots and oscillations due to the computation time-delay are compensated by explicit incorporation of the time-delay in the current control loop transfer function. The inner current control loop is adopted by an internal model controller. The internal model controller is designed to a second order deadbeat reference-to-output response which means that its response reaches the reference in two sampling time including computational time-delays. The outer voltage control loop employing P-Resonance controller is proposed. The resonance controller has an infinite gain at resonant frequency, and the resonant frequency is set to the fundamental frequency of the reference voltage in this paper. Thus the outer voltage control loop causes no steady state error as regard to both magnitude and phase. The effectiveness of the proposed control system has been verified by the experimental results.

Tracking Position Control of DC Servo Motor in LonWorks/IP Network

  • Song, Ki-Won;Choi, Gi-Sang;Choi, Gi-Heung
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.186-193
    • /
    • 2008
  • The Internet's low cost and ubiquity present an attractive option for real-time distributed control of processes on the factory floor. When integrated with the Internet, the LonWorks open control network can give ubiquitous accessibility with the distributed control nature of information on the factory floor. One of the most important points in real-time distributed control of processes is timely response. There are many processes on the factory floor that require timely response. However, the uncertain time delay inherent in the network makes it difficult to guarantee timely response in many cases. Especially, the transmission characteristics of the LonWorks/IP network show a highly stochastic nature. Therefore, the time delay problem has to be resolved to achieve high performance and quality of the real-time distributed control of the process in the LonWorks/IP Virtual Device Network (VDN). It should be properly predicted and compensated. In this paper, a new distributed control scheme that can compensate for the effects of the time delay in the network is proposed. It is based on the PID controller augmented with the Smith predictor and disturbance observer. Designing methods for output feedback filter and disturbance observer are also proposed. Tracking position control experiment of a geared DC Servo motor is performed using the proposed control method. The performance of the proposed controller is compared with that of the Internal Model Controller (IMC) with the Smith predictor. The result shows that the performance is improved and guaranteed by augmenting a PID controller with both the Smith predictor and disturbance observer under the stochastic time delay in the LonWorks/IP VDN.

A Study on the Design Method of a Continuous Time Deadbeat Controller (연속시간 유한정정제어기의 설계방법 고찰)

  • 김성열;이금원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.326-326
    • /
    • 2000
  • Continuous time system deadbeat controller(CdbC) has been studied mainly since 1992 especially by Japan researchers. They suggested delay elements. These elements stem from the finite Laplace Transform which is the starting point in deadbeat control system design in continuous time system. Every transfer function is established by these elements. From some conditions such as internal model stability and peasibility of a CdbC controller. unknown polynomials or coefficients can be calculated. In this paper, optimal pole placement of the closed loop system is suggested. From this. a CdbC controller with lower order can be obtained which attains the same level of weighted sensitivity function's H$_{\infty}$ norm used as a measure of the robustness property as existing CdbCs.

  • PDF

Input-Constrained Current Controller for DC/DC Boost Converter

  • Choi, Woo Jin;Kim, Seok-Kyoon;Kim, Juyong;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2016-2023
    • /
    • 2016
  • This paper presents a simple input-constrained current controller for a DC/DC boost converter with stability analysis that considers the nonlinearity of the converter model. The proposed controller is designed to satisfy the inherent input constraints of the converter under a physically reasonable assumption, which is the first contribution of this paper. The second contribution is providing a rigorous proof of the proposed control law, which keeps the closed-loop system along with the internal dynamics stable. The performance of the proposed controller is demonstrated through an experiment employing a 20-kW DC/DC boost converter.

Design of Generalized Minimum Variance Controllers for Nonlinear Systems

  • Grimble Michael J.
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.3
    • /
    • pp.281-292
    • /
    • 2006
  • The design and implementation of Generalized Minimum Variance control laws for nonlinear multivariable systems that can include severe nonlinearities is considered. The quadratic cost index minimised involves dynamically weighted error and nonlinear control signal costing terms. The aim here is to show the controller obtained is simple to design and implement. The features of the control law are explored. The controller obtained includes an internal model of the process and in one form is a nonlinear version of the Smith Predictor.

Design of IMC Controller for Nonlinear Systems by Using Adaptive Neuro-Fuzzy Inference System (뉴로 퍼지 시스템을 이용한 비선형 시스템의 IMC 제어기 설계)

  • 강정규;김정수;김성호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.236-236
    • /
    • 2000
  • Control of Industrial processes is very difficult due to nonlinear dynamics, effect of disturbances and modeling errors. M.Morari proposed Internal Model Control(IMC) system that can be effectively applied to the systems with model uncertainties and time delays. The advantage of IMC systems is their robustness with respect to a model mismatch and disturbances. But it was difficult to apply for nonlinear systems. Adaptive Neuro-Fuzzy Inference System which contains multiple linear models as consequent part is used to model nonlinear systems. Generally, the linear parameters in neuro-fuzzy inference system can be effectively utilized to identify a nonlinear dynamical systems. In this paper, we propose new IMC design method using adaptive neuro-fuzzy inference system for nonlinear plant. Numerical simulation results show that proposed IMC design method has good performance than classical PID controller.

  • PDF

Design of IMC for Nonlinear Systems by Using Adaptive Neuro-Fuzzy Inference System (뉴로 퍼지 시스템을 이용한 비선형 시스템의 IMC 제어기 설계)

  • Kim, Sung-Ho;Kang, Jung-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.11
    • /
    • pp.958-961
    • /
    • 2001
  • Control of Industrial processes is very difficult due to nonlinear dynamics, effect of disturbances and modeling errors. M.Morari proposed Internal Model Control(IMC) system that can be effectively applied to the systems with model uncertainties and time delays. The advantage of IMC is their robustness with respect to a model mismatch and disturbances. But it is difficult to apply for nonlinear systems. ANFIS(Adaptive Neuro-Fuzzy Inference System) which contains multiple linear models as consequent part is used to model nonlinear systems. Generally, the linear parameters in ANFIS can be effectively utilized to control a nonlinear systems. In this paper, we propose new ANFIS-based IMC controller for nonlinear systems. Numerical simulation results show that the proposed control scheme has good performances.

  • PDF

Nonlinear Controller for the Velocity Tracking and Rejection of Sinusoidal Disturbances in Permanent Magnet Stepper Motors (영구 자석 스테퍼 모터의 속도 추종과 외란 제거를 위한 비선형 제어기)

  • Kim, Won-Hee;Gang, Dong-Gyu;Han, Jonh-Pyo;Chung, Chung-Choo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.632-638
    • /
    • 2011
  • In this paper, a nonlinear controller is proposed to track the desired velocity and to cancel sinusoidal disturbances. The proposed method consists of a velocity tracking controller and internal model principles (IMPs). For the design of the velocity tracking controller, mechanical and electrical dynamic controllers are independently designed. For the mechanical dynamics, the velocity tracking controller generates the desired quadrature current to track the desired velocity. The current tracking controller is designed to guarantee the desired quadrature current and to regulate the direct current. Therefore, the proposed velocity tracking controller has a field-oriented control. Since the controllers of the mechanical and electrical dynamics are independently designed, the stability of the closed-loop system is demonstrated using passivity. Since both the cogging torque and DC current errors act as sinusoidal disturbances in PMSM, we use four add-on type IMPs that preserve the merits and performance of the pre-designed controller without sacrificing the closed-loop stability. The performance of the proposed method is validated via simulations.