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ABSTRACT

The problem considered in this paper is that the tip position of a flexible cantilever beam is controlled to
follow a command signal, using a pair of piezoelectric actuators at the clamped end. The beam is lightly
damped and so the natural transient response is rather long, and also since the sensor and actuator are not
collocated, the plant response is non-minimum phase. Two control strategies were investigated. The first
involved conventional PID control in which the feedback gains were adjusted to give the fastest closed-loop
response to a step input. The second control strategy was based on an internal model control (IMC)
architecture. The control filter in the IMC controller was a digital FIR device designed to minimize the
expectation of the mean square tracking error. The IMC controller designed for the beam was found to have
very much reduced settling times to a step input compared with those of the PID controller.

1. Introduction

Recent developments in smart materials such as PZT
ceramics and PVDF polymer films enable actuators and
sensors to be integrated into smart structures, which can
then be controlled actively."’ The applications of such
piezoelectric transducers have been investigated for
smart structures for vibration rejection, using active
vibration control (AVC), and sound radiation control of
vibrating structures, using active structural acoustical
control (ASAC) etc.!”” A new approach to tip position
control of a flexible cantilever beam using PZT actuators
is studied in this paper. This approach can be clearly
distinguished from conventional vibration rejection
controls in that the actuator is driven so that the beam tip
follows a command signal. Lightly damped flexible
structures, such as the beam considered here, can have a
long transient response when moved suddenly. However,
some mechanical systems consisting of flexible
structures require high-speed and accurate tracking
capabilities, such as robot manipulators in spacecrafts. In
order to overcome the inherent long transient response of
such structures, a feedforward control strategy could be
used. The feedforward controller should anticipate the
inverse dynamics of the plant within a specified
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bandwidth. The problem is made more difficult by the
non-minimum phase behavior of the system response,
caused by the non-collocation of sensor and actuator, and
the dispersive property of flexible structures. The non-
minimum phase zeros of the system response mean that
an exact stable inverse cannot be achieved by direct
inversion. A number of feedforward techniques have
been developed to minimize the effect of unstable zeros
@ but an alternative formulation is presented here, in
which a digital FIR filter is designed to minimize the
mean-square tracking error.

A conventional analogue proportional, integral and
derivative (PID) control technique could also be used for
the problem, but the non-minimum phase behavior limits
the maximum control gains before there is a danger of
instability, resulting in a rather long closed-loop transient
response. A different feedback controller architecture is
investigated, which is known as internal model control
(IMC).®! The IMC architecture uses an internal model of
the response of the system under control, the plant, and a
control filter that can be designed to meet the control
objectives of good tracking performance and robust
stability. The IMC controller reduces to a feedforward
system if the plant dynamics are known perfectly © and
thus provides a connection with the earlier feedforward
approach under nominal plant conditions. It is shown that
although the feedback nature of the IMC controller can
cause instability if the changes in the plant response are
too large, the performance of the closed-loop system is
very much better than that of an entirely open-loop,
feedforward, system before this limit is reached.
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In most of the previous position control systems for
flexible beams electrical motors have been the only
actuator used, for example ref. (2). In this paper, however,
a pair of integrated piezoceramic PZT actuators are used,
which provide many attractive features such as light
weight, high sensitivity, large bandwidth and distributed
properties *), although only limited motion is possible.
A practical impiementation of the IMC controller
implemented with a digital signal processor has also
been investigated.

2. Beam Modelling

An experimental flexible beam of 800 mm long (L),
20 mm wide (B) and 1.5 mm thick (f) was constructed of
aluminium strip, clamped at one end and free at the other
end as shown in Fig. 1(a). A pair of ‘Morgan Matroc’
PZT 5H piezoceramic actuators, which are each 100 mm
long (Z,), 20 mm wide, and 1 mm thick, was bonded on

either side of the beam at the clamped end and driven out
of phase so as to generate a bending moment.

For the detection of the beam tip motion, an inductive
position sensor (Honeywell proximity sensor 924 series
30mm) was used. The frequency range of interest was 0 -
100Hz and the beam positioned vertically for the
experiment. The input voltage and the tip deflection were
measured with an HP3566A Signal Analyzer, and the
input signal to the piezoceramic actuator was amplified
to 100V by a PCB AVC 790 series power amplifier.
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Fig.1 (a) Experimental flexible beam. (b) Frequency
response function of the flexible beam.

After an initial system identification experiment, four

resonances were observed between 0 - 100Hz, at 2.37Hz,
13.92Hz, 37.25Hz, and 67.44Hz respectively as shown in
Fig. 1(b). Their damping ratios were measured to be
6i=0.26%, ¢=0.33%, &=0.35%, and ¢=0.51%. The
phase response shows a steep phase change of -180° at
each resonance frequency. Fig. 1(b) also indicates that
the plant is non-minimum phase, which is caused by the
non-collocation of the actuator and sensor.

The measured steady state beam deflection was about
1.25mm for 100V step input to the piezoceramic
actuators. The response of the beam to a step input is
shown in Fig. 5(a), and the measured 95% settling time
was about 125 seconds, which demonstrating the very
lightly-damped nature of the beam.

A uniform cantilever beam with length L which has
clamped-free ends boundary conditions is considered and
it is subjected to a harmonic bending moment Af(x,¢) at
x=L1,. The tip deflection y(L,r) of the beam is
assumed by the superposition of the individual flexural
mode as y([,,t)=z:°=l B, ()¢, (L)> where B (1) is the
nth flexural modal amplitude and ¢ (L) is the nth

flexural mode shape at tip.

By considering the boundary conditions of the
cantilever beam, a receptance form for the tip deflection
due to the bending moment at x=_  can be derived as

(L) =i k¢, (L), (L,) s 0}
M(L,) = Apli(w; -@°)+ j2¢,0,0]
where k , w,, ¢, are the nth flexural wavenumber,
natural frequency, damping ratio respectively, and
#.(L,) is the spatial derivative of ¢ (x) at x=L_,

and A is the sectional area of the beam.
A pair of PZT actuators can induce bending moment at
x=L, when they are driven out-of phase. The

relationship between the bending moment M induced by
a pair of piezoactuators and input voltage V is given as ©®
M=aV @

where the coefficient o is the gain of the
piezoceramic actuator. Thus, the relationship between the
input voltage V and the tip deflection y(L) or the

transfer function of the plant model can be written in the
Laplace domain as

y(1L) S a,

G = =K 2 4 3 .

) 14 ;sz +2¢,0,5+w} @)
where g =¢ (L)¢!(L,) and K=ok, /ApL is the

gain of the plant. The zeros of the plant model G(s)

depend on the coefficients g_, which are determined by
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the phase relationship between the command input and
the position output of the each resonant mode. In other
words, the zeros, which have a direct effect on the
overall stability of the control system ©®, are dependent
on the values of the mode shapes and the spatial
derivatives of the mode shapes at L (location of sensor)
and [ (location of actuator). However, the poles are

independent of the locations of the sensor and actuator

since they correspond to the natural frequencies of the
flexible beam system.

3. Controller Design

3.1 Analogue PID Feedback Controller

The block diagram of an analogue position control
feedback system is shown in Fig. 2(a), in which r(z) is
the command signal, G(s), y(z), e(t) and u(r) are
the plant, the output of the plant, the error signal, and

the control signal respectively. A PID controller can be
given as

Hs) =K, + X1 K50 @
N

where K is the proportional gain which can provide
an electronic stiffness, K; is the integral gain which
removes the steady state tracking error, and Kj is the
derivative gain which gives an active damping.

3.2 Digital IMC Feedback Controller

The IMC approach is a method of designing feedback
control systems using the mathematical techniques
developed for feedforward control. IMC can transform a
feedback position control system into a system
resembling a feedforward position control system.
Consider the block diagram of a digital IMC controller
for a sampled-time single input, single output control
system as shown in Fig. 2(b).

The digital feedback controller H(z) contains an

internal model é(z) of the real plant G(z) and the
contro! filter W(z). The frequency response of the entire
feedback controller is

u(z)
r(z)-y(2)

The response of the output y(n) of the entire

=H(z)= _Vﬂi)T_ s
1-W(2)G(2)

()
feedback control system to the command signal r(n)
can also be expressed as

yz) __G()H(z)
r(z) 1+G(2)H(z)

_ PRGR)
1+ W(2)[G(2) - G(2)]

If the plant model G(z) is a perfect representation of
the plant G(z) (i.e. G(z)=G(z)) and G(z) is stable,
then the classical feedback system with controller H(z)
is internally stable if and only if W(z) is stable [6] in
which case z(n) tends to zero in Figure 2(b) and the

equivalent block diagram becomes entirely feedforward
as shown in Fig. 2(c). The system output y(n) is then

W(z)G(z)r(n), and thus the complementary sensitivity
function is equal to W(z)G(z) in this case. Thus, if w(z)
is the inverse of G(z), then the output y(n) will follow
the command signal r(n) perfectly. In practice this
cannot be achieved with a stable W(z) since G(z) is

non-minimum phase and so a least
approximation to the inverse control be used.
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Fig. 2 Block diagrams of control stratigies. (a)
Analogue PID feeback. (b) Digital IMC feedback.
(c) Equivalent feedforward system to the IMC
feedback when G(z) = G(z).

W

The more general problem of calculating the optimum
performance of the feedforward system as shown in Fig.
3(a) is outlined below, when the command signal r(n)

is fed to an FIR feedforward digital filter Ww(z), with
coefficients, whose output drives the digital plant G(z)
and the plant then produce the system output y(n).

The desired signal d(n) is equal to the command
signal r(n) delayed by A samples. Such a modeling

delay is not generally used in control systems since the
required signal may not be known in advance in all
applications, A will initially be taken to be zero. In
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some applications, however, such as when the plant is
required to execute a repetitive motion for example, the
required signal is known in advance, and considerable
improvements in performance can be obtained with a
suitable choice of A, which is known as the modeling
delay in the signal processing literatures.”?
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Fig.3 (a) Block diagram of a feedforward control
system to track a setpoint command. (b)
Rearrangement of block diagram for the design
of the optimal control filter #(z).

The error signal ¢(n) can be given by subtracting the
system output y(n) from the desired signal d(n) as
e(z)=d(2)-W(2)G(2)r(z) )
However, if the control filter W(z) is fixed and is
linear time invariant, the order of the blocks G(z) and
W(z) can be reversed, as shown in Figure 3(b), to
generate a signal v(n) which is equal to the command
signal filtered by the digital plant G(z).
Since the control filter is a FIR filter device the error
signal can now be expressed as ©©
e(n)=d(n)-w'v(n), ®
where w=[w,---w,,]’s w, is the ith coefficient of

the control filter W(z) and v(n)=[v(n)---v(n—-I+DT .
Assuming that the reference signal is random each w; can
be adjusted to minimize a cost function J, equal to the

expectation of square values of the error signals e(n)
and so

J,=Ee(m), ®

The expectation of the squared error signals can now
be written as

He(n)]=w Aw=-2w'b+c, (1)

where ¢ is the scalar E[d*(n)], b is the vector of
cross-correlation function between v(n) and d(n) ,

b= E[v(n)d(n)] and A is a Toeplitz matrix of auto-
correlation function of v as A = E[v(n)v"(n)). If A is

not singular, the matrix equation can be solved for the
optimal, Wiener, set of filter coefficients Won which

will produce a minimum error signal as
w,, =A"b, (12)

This Wiener filter can then be readily calculated from
the cross-correlation vector and the auto-correlation
matrix.

The numerical stability of the solution of equation
(12) depends on the conditioning of the matrix A,
because this optimal Wiener solution depends on its
inverse.

The conditioning may be improved by modifying the
cost function to add a regularization term that is
proportional to the expectation of the squared values of
the filter coefficients®, so that J, = E[e*(n)]+ fw'w, in
which the coefficient weighting or regularization
parameter f improves the condition number of the A
matrix to be inverted.

4. Experimental Results

Two position-control experiments for the flexible
beam were performed, with either an analogue PID
feedback controller or a digital IMC feedback controller.

In the analogue PID control experiment as shown in
Fig. 4(a), the three control gains in equation (6) were
determined by manual tuning to be K/~0.4, K~1.6 and
Kp=0.0004.

Although there has been a number of ad-hoc tuning
rates for the PID controller such as Ziegler-Nicholas %,
most of which assume a well-damped plant response,
there is no analytic method of adjusting the three
parameters to obtain the shortest transient response. In
this work a trial and error approach was thus adopted to
obtain the exact values of the gains about their final
settings.

Fig. 5(b) shows the measured closed-loop step
response with the PID control, which settles within 95%
of the command position at about 75 seconds. The step
response before control was about 125 seconds as plotted
in Fig. 5(a).

The measured step response with the PID controller
shows that it follows the command gradually with
limited overshoot using an electronic stiffness (by X,

and K, of the controller) created by the piezoactuators.

It settles precisely to the command position by the action
of the gain X, as can be seen from Fig. 5(b).
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Fig. 4 Implementation of the control systems. (a)
Analogue PID feedback control. (b) Digital IMC

feedback controll. (c) Details of IMC architecture.

In the real-time IMC feedback control system, a
digital signal processor (DSP) board (Loughborough
Sound Images TMS320C30 PC system board) with 16
bit ADC/DAC was used.

The digital plant model G(z) for the sampled-time

plant G(z) has been defined to include the responses of a
DAC, an antialiasing low-pass filter, a power amplifier,
the physical flexible beam with a pair of piezoactuators,
a tip position sensor, a reconstruction low-pass filter and
an ADC as shown in Fig. 4(b).

The sampling frequency was 300 Hz and the cut-off
frequency in the low-pass filters was 100 Hz. Thus the
plant model G(z) on which the digital design is based

must contain the time delay caused by the DSP
computation time and the low-pass filters' delay, as well
as the pure delay in the non-minimum phase flexible

beam.

In the real-time control experiment, the IMC feedback
control designed has been implemented based on the
block diagram in Fig. 4(b). The details of the IMC
control implementation with the DSP is illustrated in Fig.
4(c). Both the plant model G(z) with an IR filter and

the 200-coefficient control filter Wope designed with

Brownian noise input were implemented inside the DSP
board.

The upper and the lower graphs in Fig. 5(c) represent
the measured real-time closed-loop step responses from 0
- 10000 samples (about 0 - 33 seconds) and 0 - 500
samples (about 0 - 1.7 seconds) respectively. The closed-
loop step response of the IMC feedback control settled
within 95% of command position at about 10.93 seconds.

The step response with the IMC control in Fig. 5(c)
shows a sort of ringing motion at about 2.4Hz, which

‘makes the tip positioning difficult. This is probably

caused by the misalignment in frequencies and
magnitude differences between the anti-resonances of the
control filter #(z) and the resonances of the actual plant
response ((z), because of plant model was not perfect,
G(z) # G(z). The misalignment at the first resonance
frequency was dominant in the measured closed-loop
step response with a ringing at about 2.4Hz.

The misalignment of the resonance frequencies of
G(z) and the anti-resonance frequencies of W(z) may

have been caused by slight changes in the plant dynamics.
The actual plant dynamics G(z) could be perturbed

by lots of reasons. The variation of the plant model
G(z) at over the course  of the real-time control

experiment showed that the mean value of the first
natural frequencies was 2.3763 Hz and the standard
deviation was 0.0018 Hz. This amount of variation in the
first natural frequency does not destabilize the control
system, but can cause the observed ringing in the closed-
loop step response.

This frequency misalignment problem in the IMC
feedback can make a very-lightly damped system
unstable if it is too large. The system will only be stable
if the error in the estimate of the natural frequency is less
than about half the bandwidth of the resonance. The
condition of stability with an IMC position control
architecture for a flexible structure can thus be
approximated by

1 -1,

<Sfelur? (15)

where £ and j" are the nth natural frequencies of
the actual plant G(z) and plant model G(z), and ¢,
is the nth damping ration of the actual plant.
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Fig. 5 Measured step responses. (a) Before control. (b)

After analogue PID feedback control. (c) After
digital IMC feedback control.

5. Conclusions

This paper describes the design and implementation of
an active position controller using internal model control
(IMC) for setpoint tracking control of a smart flexible
beam. The smart flexible cantilever beam was excited by
a pair of piezoceramic actuators. The objectives of the

position controller for the smart flexible beam were to
eliminate its long natural response, due to the very low
damping ratio of the beam material, and to maintain a
low steady state error by inverse control of the non-
minimum phase plant. The optimum performance of a
feedback control system was obtained by using quadratic
optimization techniques based on the minimization of the
mean square tracking error.

The performance and stability of the digital IMC
feedback controller were compared with those of the
analogue PID feedback controller. The digital IMC
feedback control showed much better performance in
settling time than that of the analogue PID feedback
control. The analogue PID feedback controller was very
robust but gave poor performance. In a practical
implementation of the IMC position control, even a very
small misalignment between the natural frequency of the
actual plant and the anti-resonance frequency of the
control filter could cause a ringing motion and a reduced
tracking performance. However, a much faster settling
was achieved with real-time digital IMC control than
with analogue PID control.
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