• Title/Summary/Keyword: Internal impedance

Search Result 240, Processing Time 0.022 seconds

Frequency Response Characteristics of Fluorescent OLED with Alternating Current Driving Method (교류구동방식에 의한 형광 OLED의 주파수 응답 특성)

  • Seo, Jung-Hyun;Ju, Sung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.1
    • /
    • pp.40-46
    • /
    • 2019
  • To study the frequency response characteristics of alternating-current-driven organic light-emitting diodes (OLEDs), we fabricated blue-fluorescent OLEDs and analyzed their electroluminescent characteristics according to the alternating current voltage and frequency. The luminance-frequency characteristics of alternating-current-driven OLED was similar to that of a low-pass filter, and the luminance of high-voltage OLED decreased at higher frequency than low-voltage OLED. The luminance characteristics of the OLED according to the frequency is due to the capacitive reactance in the OLED, generated during the alternating current driving. The frequency response characteristics of the OLED according to the voltage is due to the decrease in internal resistance of the organic layer. In addition, the negative voltage component of the alternating current did not affect the frequency response of the OLED. Therefore, the electroluminescent characteristics of OLED with an alternating current power of 60 Hz are not influenced by the frequency.

The Effective Capacitance of a Constant Phase Element with Resistors in Series

  • Byoung-Yong, Chang
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.479-485
    • /
    • 2022
  • The power of energy storage devices is characterized by capacitance and the internal resistance. The capacitance is measured on an assumption that the charges are stored at the electrode interface and the electric double layer behaves like an ideal capacitor. However, in most cases, the electric double layer is not ideal so a constant phase element (CPE) is used instead of a capacitor to describe the practical observations. Nevertheless, another problem with the use of the CPE is that CPE does not give capacitance directly. Fortunately, a few methods were suggested to evaluate the effective capacitance in the literature. However, those methods may not be suitable for supercapacitors which are modeled as an equivalent circuit of a CPE and resistor connected in series because the time constant of the equivalent circuit is not clearly studied. In this report, in order to study the time constant of the CPE and find its equivalent capacitor, AC and DC methods are utilized in a complementary manner. As a result, the time constants in the AC and DC domains are compared with digital simulation and a proper equation is presented to calculate the effective capacitance of a supercapacitor, which is extended to an electrochemical system where faradaic and ohmic processes are accompanied by imperfect charge accumulation process.

THE CURRENT STATUS OF BIOMEDICAL ENGINEERING IN THE USA

  • Webster, John G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.27-47
    • /
    • 1992
  • Engineers have developed new instruments that aid in diagnosis and therapy Ultrasonic imaging has provided a nondamaging method of imaging internal organs. A complex transducer emits ultrasonic waves at many angles and reconstructs a map of internal anatomy and also velocities of blood in vessels. Fast computed tomography permits reconstruction of the 3-dimensional anatomy and perfusion of the heart at 20-Hz rates. Positron emission tomography uses certain isotopes that produce positrons that react with electrons to simultaneously emit two gamma rays in opposite directions. It locates the region of origin by using a ring of discrete scintillation detectors, each in electronic coincidence with an opposing detector. In magnetic resonance imaging, the patient is placed in a very strong magnetic field. The precessing of the hydrogen atoms is perturbed by an interrogating field to yield two-dimensional images of soft tissue having exceptional clarity. As an alternative to radiology image processing, film archiving, and retrieval, picture archiving and communication systems (PACS) are being implemented. Images from computed radiography, magnetic resonance imaging (MRI), nuclear medicine, and ultrasound are digitized, transmitted, and stored in computers for retrieval at distributed work stations. In electrical impedance tomography, electrodes are placed around the thorax. 50-kHz current is injected between two electrodes and voltages are measured on all other electrodes. A computer processes the data to yield an image of the resistivity of a 2-dimensional slice of the thorax. During fetal monitoring, a corkscrew electrode is screwed into the fetal scalp to measure the fetal electrocardiogram. Correlations with uterine contractions yield information on the status of the fetus during delivery To measure cardiac output by thermodilution, cold saline is injected into the right atrium. A thermistor in the right pulmonary artery yields temperature measurements, from which we can calculate cardiac output. In impedance cardiography, we measure the changes in electrical impedance as the heart ejects blood into the arteries. Motion artifacts are large, so signal averaging is useful during monitoring. An intraarterial blood gas monitoring system permits monitoring in real time. Light is sent down optical fibers inserted into the radial artery, where it is absorbed by dyes, which reemit the light at a different wavelength. The emitted light travels up optical fibers where an external instrument determines O2, CO2, and pH. Therapeutic devices include the electrosurgical unit. A high-frequency electric arc is drawn between the knife and the tissue. The arc cuts and the heat coagulates, thus preventing blood loss. Hyperthermia has demonstrated antitumor effects in patients in whom all conventional modes of therapy have failed. Methods of raising tumor temperature include focused ultrasound, radio-frequency power through needles, or microwaves. When the heart stops pumping, we use the defibrillator to restore normal pumping. A brief, high-current pulse through the heart synchronizes all cardiac fibers to restore normal rhythm. When the cardiac rhythm is too slow, we implant the cardiac pacemaker. An electrode within the heart stimulates the cardiac muscle to contract at the normal rate. When the cardiac valves are narrowed or leak, we implant an artificial valve. Silicone rubber and Teflon are used for biocompatibility. Artificial hearts powered by pneumatic hoses have been implanted in humans. However, the quality of life gradually degrades, and death ensues. When kidney stones develop, lithotripsy is used. A spark creates a pressure wave, which is focused on the stone and fragments it. The pieces pass out normally. When kidneys fail, the blood is cleansed during hemodialysis. Urea passes through a porous membrane to a dialysate bath to lower its concentration in the blood. The blind are able to read by scanning the Optacon with their fingertips. A camera scans letters and converts them to an array of vibrating pins. The deaf are able to hear using a cochlear implant. A microphone detects sound and divides it into frequency bands. 22 electrodes within the cochlea stimulate the acoustic the acoustic nerve to provide sound patterns. For those who have lost muscle function in the limbs, researchers are implanting electrodes to stimulate the muscle. Sensors in the legs and arms feed back signals to a computer that coordinates the stimulators to provide limb motion. For those with high spinal cord injury, a puff and sip switch can control a computer and permit the disabled person operate the computer and communicate with the outside world.

  • PDF

Plasma D-dimer Determination in the Diagnosis of Pulmonary Embolism (폐색전증의 진단에 있어 혈청 D-dimer 측정의 진단적 가치)

  • Lim, Chae-Man;Kim, Hong-Kyu;Choi, Kang-Hyun;Lee, Sand-Do;Koh, Youn-Suck;Kim, Woo-Sung;Jang, Jae-Suck;Kim, Dong-Soon;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.1
    • /
    • pp.69-74
    • /
    • 1996
  • Background: The diagnosis of pulmonary embolism (PE) based on clinical findings is often elusive and therefore requires confirmative diagnostic method. Pulmonary angiography, though the gold standard for the diagnosis of pulmonary embolism, is an invasive method and requires trained personnel and special equipment. Lung V/Q scan, on the other hand, is a noninvasive method but the diagnostic specificity and sensitivity arc not satisfactory in case that the results are either intermediate or low probability scan. Plasma D-dimer is generated when a thrombus is fibrinolysed by plasmin and is known to be increased in various thrombotic disorders. The aim of this study was to investigate the value of the determination of plasma D-dimer level in the diagnosis of pulmonary embolism. Methods: Pulmonary angiography was performed in 17 patients who were clinically suspected to have pulmonary embolism. 9 patients(PE, $56{\pm}13.4$ yrs, M:F=8:1) were diagnosed to have pulmonary embolism by pulmonary angiography. The control group were the 8 patients with negative pulmonary angiography and 13 orthopedic patients with no evidence of pulmonary embolism on scintigraphic and impedance plethysmographic studies(n=21) (non-PE, $54.5{\pm}11.1$ yrs, M:F=11:10). Plasma D-dimer was measured by latex agglutination method in study subjects and the results were analyzed according to the presence or absence of pulmonary embolism. Results: 1) The increased level of plasma D-dimer was more frequently observed in the patients with pulmonary embolism than in the controls(>0.5 mg/L, 8 in PE, 10 in non-PE; <0.5 mg/L, 1 in PE, 11 in non-PE, p=0.049). 2) The diagnostic value of plasma D-dimer level higher than 0.5 mg/L were as follows: sensitivity 88.9%(8/9), specificity 52.4%(11/21), positive predictive value 44.4%(8/18), and negative predictive value 91.7%(11/12). Conclusion: Plasma D-dimer determination showed high sensitivity and negative predictive value in the diagnosis of pulmonary embolism and is therefore thought to be useful in excluding the possibility of pulmonary embolism.

  • PDF

Monitoring of Concrete Deterioration Caused by Steel Corrosion using Electrochemical Impedance Spectroscopy(EIS) (EIS를 활용한 철근 부식에 따른 콘크리트 손상 모니터링)

  • Woo, Seong-Yeop;Kim, Je-Kyoung;Yee, Jurng-Jae;Kee, Seong-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.651-662
    • /
    • 2022
  • The electrochemical impedance spectroscopy(EIS) method was used to evaluate the concrete deterioration process related to chloride-induced steel corrosion with various corrosion levels(initiation, rust propagation and acceleration periods). The impressed current technique, with four total current levels of 0C, 13C, 65C and 130C, was used to accelerate steel corrosion in concrete cylinder samples with w/c ratio of 0.4, 0.5, and 0.6, immersed in a 0.5M NaCl solution. A series of EIS measurements was performed to monitor concrete deterioration during the accelerated corrosion test in this study. Some critical parameters of the equivalent circuit were obtained through the EIS analysis. It was observed that the charge transfer resistance(Rc) dropped sharply as the impressed current increased from 0C to 13C, indicating a value of approximately 10kΩcm2. However, the sensitivity of Rc significantly decreased when the impressed current was further increased from 13C to 130C after corrosion of steel had been initiated. Meanwhile, the double-layer capacitance value(Cdl) linearly increased from 50×10-6μF/cm2 to 250×10-6μF/cm2 as the impressed current in creased from 0C to 130C. The results in this study showed that monitoring Cdl is an effective measurement parameter for evaluating the progress of internal concrete damages(de-bonding between steel and concrete, micro-cracks, and surface-breaking cracks) induced by steel corrosion. The findings of this study provide a fundamental basis for developing an embedded sensor and signal interpretation method for monitoring concrete deterioration due to steel corrosion at various corrosion levels.

Separator Effect on the Cell Failure of Lithium Secondary Battery using Lithium Metal Electrode (리튬금속 전극을 이용한 리튬이차전지의 내부단락에 대한 분리막의 영향)

  • Kim, Ju-Seok;Bae, Sang-Ho;Hwang, Min-Ji;Heo, Min-Yeong;Doh, Chil-Hoon
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.3
    • /
    • pp.171-175
    • /
    • 2011
  • Lithium secondary batteries using lithium metal count electrode are easy to use and to analyze the specific characteristics of working electrode. Nevertheless, during the charge operation internal electrical short circuit could be caused by the dendritic growth of lithium. The cell failure by the short circuit depends on the condition of separator such as constitutive material and thickness. To prevent the cell failure caused by the dendritic growth of lithium, the electrochemical properties of the cell of lithium metal count electrode were evaluated for four different kinds of separator. Among the tested separators, GMF (glass micro-fiber filter, $300{\mu}m$) was the most promising one because it could effectively prevent the cell failure during the charge. The cell using GMF separator had relatively low impedance. Generally the cell using thicker separator than $50{\mu}m$ could effectively avoid the cell failure by internal short circuit and had the good cycleability. The highest rate capability by the signature method was acquired in the case of GMF separator.

Numerical Analysis of Three-Dimensional Magnetic Resonance Current Density Imaging (MRCDI) (3차원 자기공명 전류밀도 영상법의 수치적 해석)

  • B.I. Lee;S.H. Oh;E.J. Woo;G. Khang;S.Y. Lee;M.H. Cho;O. Kwon;J.R. Yoon;J.K. Seo
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.269-279
    • /
    • 2002
  • When we inject a current into an electrically conducting subject such as a human body, voltage and current density distributions are formed inside the subject. The current density within the subject and injection current in the lead wires generate a magnetic field. This magnetic flux density within the subject distorts phase of spin-echo magnetic resonance images. In Magnetic Resonance Current Density Imaging (MRCDI) technique, we obtain internal magnetic flux density images and produce current density images from $\bigtriangledown{\times}B/\mu_\theta$. This internal information is used in Magnetic Resonance Electrical Impedance Tomography (MREIT) where we try to reconstruct a cross-sectional resistivity image of a subject. This paper describes numerical techniques of computing voltage. current density, and magnetic flux density within a subject due to an injection current. We use the Finite Element Method (FEM) and Biot-Savart law to calculate these variables from three-dimensional models with different internal resistivity distributions. The numerical analysis techniques described in this paper are used in the design of MRCDI experiments and also image reconstruction a1gorithms for MREIT.

A Study on Coupling Coefficient and Resonant Frquency tunable Multi-band Internal Antenna (결합계수 및 주파수 튜너블 다중대역 내장형 안테나에 관한 연구)

  • Lee, Moon-Woo;Lee, Sang-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.8
    • /
    • pp.59-66
    • /
    • 2010
  • In this paper, the internal antenna for mobile communication handset which is able to control both coupling coefficient and resonant frequency without any major modification of radiator and ground plane of antenna. Novel internal antenna with its controllable resonant frequency is presented for triple-band or over mobile handsets. The operating range can include GSM(880~960 MHz), GPS($1,575{\pm}10MHz$), DCS(1,710~1,880MHz), US-PCS(1,850~1,990 MHz), and W-CDMA(1,920~2,170 MHz). The proposed antenna is realized by combination of a half wavelength loaded line antenna and PIFA(Planner Inverted F Antenna). A single shorting and feeding points are used and they are common to both antenna structures. One of two inductors which is placed at each shorting post, one inductor is for adjusts amount of coupling, and the other controlling the resonant frequency in DCS/US-PCS/WCDMA bands. The inductance range for control of input impedance is between 0nH and 6.8nH, and each of gain variation in GSM, GPS and DCS/US-PCS/WCDMA band is under 0.15dBi, 0.73dBi and 0.29dBi. The inductance range for control of the resonant frequency is between 1640MHz and 2500MHz, and each of gain variation in GSM, GPS and DCS/US-PCS/WCDMA band is under 0.46dBi, 0.53dBi and 0.8dBi.

Hydrogen Production by Catalytic Reforming of $CO_2$ by $CH_4$ over Ni Based Catalysts and It's Applications (Ni계 촉매상에서 메탄에 의한 이산화탄소의 개질반응에 의한 수소제조 및 응용)

  • Moon, Dong-Ju;Kang, Jung-Shik;Ryu, Jong-Woo;Kim, Dae-Hyun;Yoo, Kye-Sang;Lee, Hyun-Joo;Kim, Hong-Gon;Lee, Sang-Deuk;Ahn, Byoung-Sung;Lee, Byung-Gwon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.2
    • /
    • pp.166-173
    • /
    • 2006
  • Catalytic reforming of $CO_2$ by $CH_4$ over Ni-YSZ based catalysts was investigated to produce syngas as raw material of high valued chemicals and develop high performance catalyst electrode for an internal reforming of $CO_2$ in SOFC system. Ni-YSZ based catalysts were prepared using physical mixing and maleic acid methods to improve catalytic activity and inhibition of carbon deposition. The catalysts before and after the reaction were characterized by $N_2$ physisorption, TPR(temperature programed reduction), XRD and impedance analyzer. The conversions for $CO_2$ and $CH_4$ over Ni-MgO catalyst showed 90% but much amount of carbon deposition was detected on catalyst surface. On the other hand, the conversions for $CO_2$ and $CH_4$ over NiO-YSZ-$CeO_2$ catalyst showed 100% and 85% respectively, and carbon deposition on catalyst surface was inhibited under the tested condition. It was concluded that NiO-YSZ-$CeO_2$ catalyst is a promising candidate for the catalytic reforming of $CO_2$ and the internal reforming in SOFC system.

Comparative Study on Body Fat Distribution in Korean and Japanese Young Female Subjects (한국과 일본여자의 체지방 분포에 관한 연구)

  • 김향숙
    • Journal of Nutrition and Health
    • /
    • v.26 no.5
    • /
    • pp.615-624
    • /
    • 1993
  • The body fat distribution and nutritional state of the Korean and Japanese young female subjects were compared. Three-day individually weighed, dietary intakes and anthropometric measurements were determinded in 48 Korean and 60 Japanese female students. 19 to 23 yr of age, from the divisions of nutritions. The body composition estimates were measured by bioeletrical impedance-total body water(BI-TBW) method. There were no significant difference between the Korean and Japanese young females in body size and body shape. The Korean young females had lower estimated total body fat and internal fat that calculated by BI-TBW method, but there was no great difference between the Korean and the Japanese in subcutaneous fat. In contrast, the Korean young females are reported to have the same total energy expenditure per day as the Japanes young females and the total energy intakes and carbohydrate energy intake ratio per day were significantly higher than those of the Japanese young females. The difference in body fat distribution and energy intakes in Korean, and the role of capsaicin in red pepper are discussed as a possible determinant of the internal fat in the Korean vs the Japanese.

  • PDF