• Title/Summary/Keyword: Internal friction angle

Search Result 342, Processing Time 0.027 seconds

Teaching learning-based optimization for design of cantilever retaining walls

  • Temur, Rasim;Bekdas, Gebrail
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.763-783
    • /
    • 2016
  • A methodology based on Teaching Learning-Based Optimization (TLBO) algorithm is proposed for optimum design of reinforced concrete retaining walls. The objective function is to minimize total material cost including concrete and steel per unit length of the retaining walls. The requirements of the American Concrete Institute (ACI 318-05-Building code requirements for structural concrete) are considered for reinforced concrete (RC) design. During the optimization process, totally twenty-nine design constraints composed from stability, flexural moment capacity, shear strength capacity and RC design requirements such as minimum and maximum reinforcement ratio, development length of reinforcement are checked. Comparing to other nature-inspired algorithm, TLBO is a simple algorithm without parameters entered by users and self-adjusting ranges without intervention of users. In numerical examples, a retaining wall taken from the documented researches is optimized and the several effects (backfill slope angle, internal friction angle of retaining soil and surcharge load) on the optimum results are also investigated in the study. As a conclusion, TLBO based methods are feasible.

Experimental study of heat transfer and pressure drop characteristics for flow of water inside circular smooth and micro-fin tubes (평활관 및 미세휜관 내에서의 물을 이용한 열전달 및 압력강하 특성에 관한 실험)

  • Park, H.B.;You, S.M.;Youn, B.;Yoo, K.C.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.4
    • /
    • pp.454-461
    • /
    • 1997
  • Heat transfer and pressure drop for single phase flow of water in circular smooth and micro-fin tubes are measured. Copper tubes of 9.52 and 7mm outer diameter were used. The internal roughness in micro-fin tubes was formed by spiral grooves having $25^{\circ}$ helx angle, 0. 12mm fin height and 0.454mm pitch in 9.52mm tubes; $18^{\circ}$ helix angle, 0.15mm fin height and 0.322mm pitch in 7mm tubes. The measured friction factor and heat transfer coefficient are compared with relevant previous works, and the correlations for micro-fin tube are developed.

  • PDF

Variation of Landslide Risk with Parameters (매개변수에 따른 산사태 위험도의 변화)

  • Lee, Jundae;Kwon, Youngcheul;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.1
    • /
    • pp.15-23
    • /
    • 2018
  • In this study we performed risk evaluation based on parameters using the SINMAP, GIS-based extended program in order to predict ground disaster that is frequent recently. As for the risk evaluation, in order to understand the effects of parameters, we defined that the ranges of internal friction angles and T/R values as important variables had three and four patterns, respectively. The results of the interpretation were compared with those of the existing landslide in order to identify landslide flow and to evaluate the applicability of the parameters. The analysis of the geomorphologic saturated zone showed that the boundary saturated zone and the saturated zone were almost consistent with the site of avalanche of earth and rocks and the area of underground water convergence was correlated to the area where collapse started, indicating that the geomorphologic saturated zone may serve as an index for estimating possibility of landslide when used with slope distribution, colluvial soil, and structures inducing landslide in combination. When the lower limit of the internal friction angle increased more, the upper threshold decreased by 50 to 70% and the influence on the stability index was higher, but the influence was declined within the range of lower wetness index. The analysis of changes based on wetness index range showed that all the groups have similar SI distribution, except for the one in which mean altitude values are applied, indicating that the results are susceptible more by the internal friction angle than by the wetness index.

Analysis and Optimization of Design Parameters in a Cold Cross Rolling Process using a Response Surface Method (반응표면법을 이용한 냉간전조압연공정 설계변수의 영향도 분석 밑 설계최적화)

  • Lee, H.W.;Lee, G.A;Choi, S.;Yoon, D.J.;Lim, S.J.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.550-555
    • /
    • 2006
  • In this study, effects of forming angle and friction coefficient on a initiation of the Mannesmann hole defect were analyzed by using a response surface method. The maximum effective plastic strain at center point of specimen is utilized for the prediction of the starting point of crack occurrence, which is suggested by the comparison of integrals of four different ductile fracture models between the histories of the effective plastic strain at center point. It was revealed that the principal stress at the center is the dominant element to the increase of the effective plastic strain. It was also verified by the simulation results from the comparison of experiment and simulation. It is provided that the forming angle of 25 degrees and the spreading angle of 1 degree can be a proper design condition without an occurrence of internal hole defect and an excessive slip.

Effect of roughness on interface shear behavior of sand with steel and concrete surface

  • Samanta, Manojit;Punetha, Piyush;Sharma, Mahesh
    • Geomechanics and Engineering
    • /
    • v.14 no.4
    • /
    • pp.387-398
    • /
    • 2018
  • The present study evaluates the interface shear strength between sand and different construction materials, namely steel and concrete, using direct shear test apparatus. The influence of surface roughness, mean size of sand particles, relative density of sand and size of the direct shear box on the interface shear behavior of sand with steel and concrete has been investigated. Test results show that the surface roughness of the construction materials significantly influences the interface shear strength. The peak and residual interface friction angles increase rapidly up to a particular value of surface roughness (critical surface roughness), beyond which the effect becomes negligible. At critical surface roughness, the peak and residual friction angles of the interfaces are 85-92% of the peak and residual internal friction angles of the sand. The particle size of sand (for morphologically identical sands) significantly influences the value of critical surface roughness. For the different roughness considered in the present study, both the peak and residual interaction coefficients lie in the range of 0.3-1. Moreover, the peak and residual interaction coefficients for all the interfaces considered are nearly identical, irrespective of the size of the direct shear box. The constitutive modeling of different interfaces followed the experimental investigation and it successfully predicted the pre-peak, peak and post peak interface shear response with reasonable accuracy. Moreover, the predicted stress-displacement relationship of different interfaces is in good agreement with the experimental results. The findings of the present study may also be applicable to other non-yielding interfaces having a similar range of roughness and sand properties.

Effect of Relative Density and Fines Content on Pullout Resistance Performance of Drilled Shafts (상대밀도와 세립분 함유율이 현장타설말뚝의 인발저항 성능에 미치는 영향에 관한 연구)

  • You, Seung-Kyong;Hong, Gigwon;Jeong, Minwoo;Shin, Heesoo;Lee, Kwang-Wu;Ryu, Jeongho
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.4
    • /
    • pp.37-47
    • /
    • 2018
  • This paper described a results of direct shear test and pullout test by using soil supported by drilled shafts in order to evaluate the effect of relative density and fines content on pullout resistance performance of drilled shafts. The result of direct shear test showed that the variation characteristics of internal friction angle and cohesion could be confirmed quantitatively. The result of pullout test also showed that the effect of relative density and fines content on pullout resistance performance of drilled shafts was confirmed. That is, the contribution of the internal friction angle and cohesion of soils on the pullout resistance performance of drilled shafts was found to vary, when the fines content was about 13% based on results direct shear test and pullout test. Therefore, at design of drilled shafts, the effect of skin friction resistance should be considered on the influence factor of strength parameters ($c-{\phi}$) according to the fines content of soil.

Relations between Physical and Mechanical Properties of Core Samples from the Bukpyeong and Pohang Basins (북평분지와 포항분지 시추코어의 물리적 성질과 역학적 성질간의 관계)

  • Kim, Hyunjin;Song, Insun;Chang, Chandong;Lee, Hikweon;Kim, Taehee
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.329-340
    • /
    • 2013
  • A geologic survey of the Bukpyeong and Pohang basins, as candidate basins for the geological storage of $CO_2$, was performed to evaluate storage capacity and security. To analyze the mechanical stability of the storage reservoir and cap rocks, we measured the porosity, seismic velocity, uniaxial strength, internal frictional angle, and Young's modulus of core samples recovered from the two basins. It is costly and sometimes impossible to conduct tests over the entire range of drill holes, and continuous logging data do not yield the mechanical parameters directly. In this study, to derive the mechanical properties of geologic formations from the geophysical logging data, we determined the empirical relations between the physical properties (seismic velocity, porosity, and dynamic modulus) and the mechanical properties (uniaxial strength, internal friction angle) of the core samples. From the comparison with our core test data, the best fits to the two basins were selected from the relations suggested in previous studies. The relations between uniaxial strength, Young's modulus, and porosity of samples from the Bukpyeong and Pohang basins are more consistent with certain rock types than with the locality of the basins. The relations between the physical and mechanical properties were used to estimate the mechanical rock properties of geologic formations from seismic logging data. We expect that the mechanical properties could also be used as input data for a modeling study to understand the mechanical instability of rock formations prior to $CO_2$ injection.

Analysis of Dynamic Earth Pressure Based on Zero Extension Line Theory (영팽창선이론(零膨脹線理論)에 의한 동적토압해석(動的土壓解析))

  • Shin, Dong Hoon;Hwang, Jung Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.235-244
    • /
    • 1993
  • The present study was made based on the zero extension line theory and the well-known Mononobe-Okabe's to determine the dynamic earth pressures acting on the retaining walls. The zero extension line theory, which was proposed by Roscoe et al., assumes the coincidence between the loci of failure and the zero extension lines in soil mass. ln order to compute the dynamic earth pressure developed by an earthquake, it was assumed that for the vertical retaining walls with no surcharge, the backfill materials are dense and cohesionless sandy soils, there are no changes in soil parameters during earthquake, and the horizontal earthquake intensity is considered. The effects of horizontal earthquake intensity, internal friction angle of soil, wall friction angle and dilation angle, on the earth pressure coefficients were analysed. Final1y, the presented theories were successfully compared with the Mononobe-Okabe's as well.

  • PDF

Numerical comparison of bearing capacity of tapered pile groups using 3D FEM

  • Hataf, Nader;Shafaghat, Amin
    • Geomechanics and Engineering
    • /
    • v.9 no.5
    • /
    • pp.547-567
    • /
    • 2015
  • This study investigates the behavior of group of tapered and cylindrical piles. The bearing capacities of groups of tapered and cylindrical piles are computed and compared. Modeling of group of piles in this study is conducted in sand using three-dimensional finite element software. For this purpose, total bearing capacity of each group is firstly calculated using the load-displacement curve under specific load and common techniques. Then, the model of group of piles is reloaded under this calculated capacity to find group settlements, stress states on the lateral surfaces of group block, efficiency of group and etc. In order to calculate the efficiency of each group, single tapered and cylindrical piles are modeled separately. Comparison for both tapered and cylindrical group of piles with same volume is conducted and a relation to predict tapered pile group efficiency is developed. A parametric study is also performed by changing parameters such as tapered angle, angle of internal friction of sand, dilatancy angle of soil and coefficient of lateral earth pressure to find their influences on single pile and pile group behavior.

Failure characteristics of combined coal-rock with different interfacial angles

  • Zhao, Tong-Bin;Guo, Wei-Yao;Lu, Cai-Ping;Zhao, Guang-Ming
    • Geomechanics and Engineering
    • /
    • v.11 no.3
    • /
    • pp.345-359
    • /
    • 2016
  • In order to investigate the influence of the interfacial angel on failure characteristics and mechanism of combined coal-rock mass, 35 uniaxial/biaxial compressive simulation tests with 5 different interfacial angels of combined coal-rock samples were conducted by PFC2D software. The following conclusions are drawn: (1) The compressive strength and cohesion decrease with the increase of interfacial angle, which is defined as the angle between structure plane and the exterior normal of maximum principal plane, while the changes of elastic modulus and internal friction angle are not obvious; (2) The impact energy index $K_E$ decreases with the increase of interfacial angle, and the slip failure of the interface can be predicted based on whether the number of acoustic emission (AE) hits has multiple peaks or not; (3) There are four typical failure patterns for combined coal-rock samples including I (V-shaped shear failure of coal), II (single-fracture shear failure of coal), III (shear failure of rock and coal), and IV (slip rupture of interface); and (4) A positive correlation between interfacial angle and interface effect is shown obviously, and the interfacial angle can be divided into weak-influencing scope ($0-15^{\circ}$), moderate-influencing scope ($15-45^{\circ}$), and strong-influencing scope (> $45^{\circ}$), respectively. However, the confining pressure has a certain constraint effect on the interface effect.