• 제목/요약/키워드: Internal exposure dose

검색결과 160건 처리시간 0.033초

Verification of Harmonization of Dose Assessment Results According to Internal Exposure Scenarios

  • Kim, Bong-Gi;Ha, Wi-Ho;Kwon, Tae-Eun;Lee, Jun-Ho;Jung, Kyu-Hwan
    • Journal of Radiation Protection and Research
    • /
    • 제43권4호
    • /
    • pp.143-153
    • /
    • 2018
  • Background: The determination of the amount of radionuclides and internal dose for the worker who may have intake of radionuclides results in a variation due to uncertainty of measurement data and ingestion information. As a result of this, it is possible that for the same internal exposure scenario assessors could make considerably different estimation of internal dose. In order to reduce this difference, internal exposure scenarios for nuclear facilities were developed, and intercomparison were made to determine the harmonization of dose assessment results among the assessors. Materials and Methods: Seven cases on internal exposures incidents that have occurred or may occur were prepared by referring to the intercomparison excercise scenario that NRC and IAEA have carried out. Based on this, 16 nuclear facilities concerned with internal exposure in Korea were asked to evaluate the scenarios. Each result was statistically determined according to the harmonization discrimination criteria developed by IDEAS/IAEA. Results and Discussion: The results were evaluated as having no outliers in all 7 cases. However, the distribution of the results was spread by various causes. They can be divided into two wide categories. The first one is the distribution of the results according to the assumption of the intake factors and the evaluation factors. The second one is distribution due to misapplication of calculation method and factors related to internal exposure. Conclusion: In order to satisfy the harmonization criteria and accuracy of the internal exposure dose evaluation, it is necessary that exact guidelines should be set on low dose, and various intercomparison cases also be needed including high dose exposure as well as the specialized education. The aim of the blind test is to make harmonization evaluation, but it will also contribute to securing the expertise and high quality of dose evaluation data through the discussion among the participants.

ConsExpo 모델을 이용한 구강건강행위에 따른 불소노출평가 (Assessment of Fluoride Exposure by Oral Health Behaviors using the ConsExpo Model)

  • 오나래;정미애
    • 한국콘텐츠학회논문지
    • /
    • 제17권7호
    • /
    • pp.498-504
    • /
    • 2017
  • 치아를 칫솔질하거나 치약을 사용하는 것과 같은 구강 건강 행위는 구강 건강을 개선하며, 따라서 삶의 질을 향상시키는 중요한 부분이다. 그러나 화학 물질에 대한 연구도 필요한 실정이다. 따라서 본 연구는 구강 건강 행위로 인해 야기되어지는 불소 노출에 미치는 요인을 조사하여 정확한 구강 건강 지침을 제공하고자 한다. ConsExpo 5.0 모델에서 불소 화합물의 경구 노출을 적용한 결과, 일일 불소 인체노출량 추정은 성인남성의 모델 결과 oral external dose는 0.000196 mg/kg, oral acute(internal) dose는 0.000196 mg/kg, oral chronic(internal)dose는 0.000465 mg/kg/day로 추정되었다. 성인여성은 연구결과 oral external dose는 $4.1{\times}10^{-6}mg/kg$, oral acute(internal) dose $4.1{\times}10^{-6}mg/kg$, oral chronic(internal) dose $9.99{\times}10^{-6}mg/kg/day$로 추정되었다.

몬테칼로 시뮬레이션을 이용한 소아 핵의학검사 시 인체내부 장기선량 평가 (Evaluation Internal Radiation Dose of Pediatric Patients during Medicine Tests Using Monte Carlo Simulation)

  • 이동연;강영록
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제44권2호
    • /
    • pp.109-115
    • /
    • 2021
  • In this study, a physical evaluation of internal radiation exposure in children was conducted using nuclear medicine test(Renal DTPA Dynamic Study) to simulate the distribution and effects of the radiation throughout the tracer kinetics over time. Monte Carlo simulations were performed to determine the internal medical radiation exposure during the tests and to provide basic data for medical radiation exposure management. Specifically, dose variability based on changes in the tracer kinetic was simulated over time. The internal exposure to the target organ (kidney) and other surrounding organs was then quantitatively evaluated and presented. When kidney function was normal, the dose to the target organ(kidney) was approximately 0.433 mGy/mCi, and the dose to the surrounding organs was approximately 0.138-0.266 mGy/mCi. When kidney function was abnormal, the dose to the surrounding organs was 0.228-0.419 mGy/mCi. This study achieved detailed radiation dose measurements in highly sensitive pediatric patients and enabled the prediction of radiation doses according to kidney function values. The proposed method can provide useful insights for medical radiation exposure management, which is particularly important and necessary for pediatric patients.

방사성 부품 작업환경의 삼중수소 농도 분석 및 작업종사자 내부피폭선량 평가 (Analysis of Tritium Concentration in Working Environment and Internal Exposure Dose Assessment for Radiation Workers)

  • 최경준;강창우
    • 방사선산업학회지
    • /
    • 제17권2호
    • /
    • pp.135-141
    • /
    • 2023
  • Tritium is used in various types of parts such as luminous bodies. These parts are maintained for inspection and replacement at a facility licensed to use radioactive isotopes. This study analyzed the concentration of tritium in working facilities to supplement and develop the safety management system for the maintenance environment of parts containing tritium. In addition, the internal exposure dose was evaluated to analyze the effects of leaked tritium when continuously exposed to workers. As a result of evaluating the internal exposure dose for workers for 30 days, the maximum was 9.70 μSv and the average was 1.45 μSv. Based on the results of this study, the internal radiation exposure safety of workers handling parts containing tritium was confirmed, and additional protective measures to prevent unnecessary exposure to tritium were suggested. This study is expected to contribute to supplementing and developing the radiation safety management system.

DEVELOPMENT OF THE DUAL COUNTING AND INTERNAL DOSE ASSESSMENT METHOD FOR CARBON-14 AT NUCLEAR POWER PLANTS

  • Kim, Hee-Geun;Kong, Tae-Young;Han, Sang-Jun;Lee, Goung-Jin
    • Journal of Radiation Protection and Research
    • /
    • 제34권2호
    • /
    • pp.55-64
    • /
    • 2009
  • In a pressurized heavy water reactor (PHWR), radiation workers who have access to radiation controlled areas submit their urine samples to health physicists periodically; internal radiation exposure is evaluated by the monitoring of these urine samples. Internal radiation exposure at PHWRs accounts for approximately 20 $\sim$ 40% of total radiation exposure; most internal radiation exposure is attributed to tritium. Carbon-14 is not a dominant nuclide in the radiation exposure of workers, but it is one potential nuclide to be necessarily monitored. Carbon-14 is a low energy beta emitter and passes relatively easily into the body of workers by inhalation because its dominant chemical form is radioactive carbon dioxide ($^{14}CO_2$). Most inhaled carbon-14 is rapidly exhaled from the worker's body, but a small amount of carbon-14 remains inside the body and is excreted by urine. In this study, a method for dual analysis of tritium and carbon-14 in urine samples of workers at nuclear power plants is developed and a method for internal dose assessment using its excretion rate result is established. As a result of the developed dual analysis of tritium and carbon-14 in urine samples of radiation workers who entered the high radiation field area at a PHWR, it was found that internal exposure to carbon-14 is unlikely to occur. In addition, through the urine counting results of radiation workers who participated in the open process of steam generators, it was found that the likelihood of internal exposure to either tritium or carbon-14 is extremely low at pressurized water reactors (PWRs).

Radiological safety assessment of lead shielded spent resin treatment facility with the treatment capacity of 1 ton/day

  • Byun, Jaehoon;Choi, Woo Nyun;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • 제53권1호
    • /
    • pp.273-281
    • /
    • 2021
  • The radiological safety of the spent resin treatment facility with a14C treatment capacity of 1 ton/day was evaluated in terms of the external and internal exposure of worker according to operation scenario. In terms of external dose, the annual dose for close work for 1 h/day at a distance of more than 1 m (19.8 mSv) satisfied the annual dose limit. For 8 h of close work per day, the annual dose exceeded the dose limit. For remote work of 2000 h/year, the annual dose was 14.4 mSv. Lead shielding was considered to reduce exposure dose, and the highest annual dose during close work for 1 h/day corresponded to 6.75 mSv. For close work of 2000 h/year and lead thickness exceeding 1.5 cm, the highest value of annual dose was derived as 13.2 mSv. In terms of internal exposure, the initial year dose was estimated to be 1.14E+03 mSv when conservatively 100% of the nuclides were assumed to leak. The allowable outflow rate was derived as 7.77E-02% and 2.00E-01% for the average limit of 20 mSv and the maximum limit of 50 mSv, respectively, where the annual replacement of the worker was required for 50 mSv.

Technegas 스캐닝 후 중력환기에 의한 공간선량율 측정 (The Measurement of Spatial Dose Rate by Gravity Ventilation after Technegas Scanning)

  • 김성빈;원도연
    • 한국방사선학회논문지
    • /
    • 제13권4호
    • /
    • pp.667-674
    • /
    • 2019
  • Technegas를 사용한 검사는 단순 확산 누적을 통해 폐 영상을 이미지화하기 때문에 검사를 마친 후에 검사실이 오염될 수 있다. 따라서 방사선 작업 종사자와 검사를 기다리는 환자는 technegas 흡입으로 인한 내부 피폭의 영향을 받게 된다. 이에 중력환기 전후의 시간경과에 따른 공간선량율 분포를 비교, 분석함에 따라 방사선사, 의료진, 대기 환자의 피폭선량 저감화 방법을 모색하고자 한다. 중력환기 전후 환자의 호흡기 위치에서 거리별, 각도별로 공간선량율을 10분 동안 측정하고 평균값, 표준 편차 및 감소율을 계산하였다. 실험 결과, 중력 환기 전후 감소율은 최고 95.31%였고 가장 높은 감소율은 1 ~ 3분 사이에서 나타났다. 중력환기를 통해서 방사선 작업종사자, 대기환자, 환자 보호자 및 간호사의 피폭선량을 감소시킬 수 있다. 결론적으로 중력환기를 통한 피폭선량 감소 결과는 방호 최적화를 이루는 역할을 할 것이며 ICRP 103에서 권고한 의료 피폭 저감화에 부합된다.

원전 중대사고시 피폭경로 및 핵종의 방사선 피폭에 대한 상대적 중요도 해석 (Analysis of Exposure Pathways and the Relative Importance of Radionuclides to Radiation Exposure in the Case of a Severe Accident of a Nuclear Power Plant)

  • 황원태;서경석;김은한;한문희;김병우
    • Journal of Radiation Protection and Research
    • /
    • 제19권3호
    • /
    • pp.209-221
    • /
    • 1994
  • 원자력발전소의 중대 사고시 대기로 방출된 방사성물질에 의해 피폭자가 사고후 일생동안 받게 될 전신 피폭선량과 핵종의 상대적 중요도를 방출점으로부터 거리에 따라 각 피폭경로에 대해 평가하였다. 방사능운과 지표에 침적된 방사성물질에 의한 외부피폭, 호흡과 오염된 음식물섭취에 의한 내부피폭이 피폭경로로 고려되었다. 오염된 음식물섭취에 의한 영향은 우리나라 환경을 고려하여 개발된 동적 삽식경로모델 KORFOOD을 사용하여 침적시점과 침적후 시간에 따른 음식물내 방사성물질의 농도 변화를 고려하였다. 방출점으로부터 80km까지 피폭선량을 평가한 결과, 오염된 음식물섭취에 의한 영향이 가장 높았다. 핵종별 기여도는 방사능운에 의한 외부피폭과 호흡에 의한 내부피폭의 경우 I, 침적된 방사성물질에 의한 외부피폭의 경우 Cs에 의한 영향이 가장 높았다. 오염된 음식물섭취에 의한 내부피폭의 경우 Cs은 여름철 침적, Sr은 겨울철 침적에 보다 중요한 영향을 미쳤다.

  • PDF

THE BIDAS-2007: BIOASSAY DATA ANALYSIS SOFTWARE FOR EVALUATING A RADIONUCLIDE INTAKE AND DOSE

  • Lee, Jong-Il;Lee, Tae-Young;Kim, Bong-Whan;Kim, Jang-Lyul
    • Nuclear Engineering and Technology
    • /
    • 제42권1호
    • /
    • pp.109-114
    • /
    • 2010
  • Bioassay data analysis software (BiDAS-2007) has been developed by KAERI, which adds several new functions to its previous version. New functions of the BiDAS-2007 computer code enable the user not only to do a simultaneous analysis by using two or more types of bioassay for the best internal dose evaluation, but also to do a continual internal dose evaluation from a change of the internal exposure conditions such as an intake type (acute, chronic), an intake pathway (inhalation, ingestion), an absorption type (Type F, M, S), and a particle size (AMAD, activity median aerodynamic diameter), and also to estimate the intakes in various conditions of an internal exposure at a time. The values calculated by the BiDAS-2007 code are consistent and in good agreement with those values by IMIE-2004 code by Berkovski and IMBA code by Birchall. The BiDAS-2007 computer code is very useful and user-friendly to estimate the radionuclide intakes and committed effective doses of a radiation worker.

모나자이트 취급공정에서의 라돈 및 토론 노출 특성 (Characteristics of Internal and External Exposure of Radon and Thoron in Process Handling Monazite)

  • 정은교
    • 한국산업보건학회지
    • /
    • 제29권2호
    • /
    • pp.167-175
    • /
    • 2019
  • Objectives: The purpose of this study was to evaluate airborne radon and thoron levels and estimate the effective doses of workers who made household goods and mattresses using monazite. Methods: Airborne radon and thoron concentrations were measured using continuous monitors (Rad7, Durridge Company Inc., USA). Radon and thoron concentrations in the air were converted to radon doses using the dose conversion factor recommended by the Nuclear Safety and Security Commission in Korea. External exposure to gamma rays was measured at the chest height of a worker from the source using real-time radiation instruments, a survey meter (RadiagemTM 2000, Canberra Industries, Inc., USA), and an ion chamber (OD-01 Hx, STEP Co., Germany). Results: When using monazite, the average concentration range of radon was $13.1-97.8Bq/m^3$ and thoron was $210.1-841.4Bq/m^3$. When monazite was not used, the average concentration range of radon was $2.6-10.8Bq/m^3$ and the maximum was $1.7-66.2Bq/m^3$. Since monazite has a higher content of thorium than uranium, the effects of thoron should be considered. The effective doses of radon and thoron as calculated by the dose conversion factor based on ICRP 115 were 0.26 mSv/yr and 0.76 mSv/yr, respectively, at their maximum values. The external radiation dose rate was $6.7{\mu}Sv/hr$ at chest height and the effective dose was 4.3 mSv/yr at the maximum. Conclusions: Regardless of the use of monazite, the total annual effective doses due to internal and external exposure were 0.03-4.42 mSv/yr. Exposures to levels higher than this value are indicated if dose conversion factors based on the recently published ICRP 137 are applied.