• Title/Summary/Keyword: Internal explosion

Search Result 97, Processing Time 0.028 seconds

Application of the Runge Kutta Discontinuous Galerkin-Direct Ghost Fluid Method to internal explosion inside a water-filled tube

  • Park, Jinwon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.572-583
    • /
    • 2019
  • This paper aims to assess the applicability of the Runge Kutta Discontinuous Galerkin-Direct Ghost Fluid Method to the internal explosion inside a water-filled tube, which previously was studied by many researchers in separate works. Once the explosive charge located at the inner center of the water-filled tube explodes, the tube wall is subjected to an extremely high intensity fluid loading and deformed. The deformation causes a modification of the field of fluid flow in the region near the water-structure interface so that has substantial influence on the response of the structure. To connect the structure and the fluid, valid data exchanges along the interface are essential. Classical fluid structure interaction simulations usually employ a matched meshing scheme which discretizes the fluid and structure domains using a single mesh density. The computational cost of fluid structure interaction simulations is usually governed by the structure because the size of time step may be determined by the density of structure mesh. The finer mesh density, the better solution, but more expensive computational cost. To reduce such computational cost, a non-matched meshing scheme which allows for different mesh densities is employed. The coupled numerical approach of this paper has fewer difficulties in the implementation and computation, compared to gas dynamics based approach which requires complicated analytical manipulations. It can also be applied to wider compressible, inviscid fluid flow analyses often found in underwater explosion events.

Evaluation of Internal Blast Overpressures in Test Rooms of Elcetric Vehicles Battery with Pressure Relief Vents (압력배출구를 설치한 전동화 차량 배터리 시험실의 내부 폭압 평가)

  • Pang, Seungki;Shin, Jinwon;Jeong, Hyunjin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.3
    • /
    • pp.7-18
    • /
    • 2022
  • Secondary batteries used in electric vehicles have a potential risk of ignition and explosion. Various safety measures are being taken to prevent these risks. A numerical study was performed using a computational fluid dynamics code on the cases where pressure relief vents that can reduce the blast overpressures of batteries were installed in the through-compression test room, short-circuit drop test room, combustion test room, and immersion test room in facilities rleated to battery used in electric vehicles. This study was conducted using the weight of TNT equivalent to the energy release from the battery, where the the thermal runaway energy was set to 324,000 kJ for the capacity of the lithium-ion battery was 90 kWh and the state of charge (SOC) of the battery of 100%. The explosion energy of TNT (△HTNT) generally has a range of 4,437 to 4,765 kJ/kg, and a value of 4,500 kJ/kg was thus used in this study. The dimensionless explosion efficiency coefficient was defined as 15% assuming the most unfavorable condition, and the TNT equivalent mass was calculated to be 11 kg. The internal explosion generated in a test room shows the very complex propagation behavior of blast waves. The shock wave generated after the explosion creates reflected shock waves on all inner surfaces. If the internally reflected shock waves are not effectively released to the outside, the overpressures inside are increased or maintained due to the continuous reflection and superposition from the inside for a long time. Blast simulations for internal explosion targeting four test rooms with pressure relief vents installed were herein conducted. It was found that that the maximum blast overpressure of 34.69 bar occurred on the rear wall of the immersion test room, and the smallest blast overpressure was calculated to be 3.58 bar on the side wall of the short-circuit drop test room.

A Study on Design Method of Blast Hardened Bulkhead Considering the Response of Shock Impulse (충격량에 대한 응답을 고려한 폭발강화격벽 설계 방법 연구)

  • Myojung Kwak;Joonyoung Yoon;Seungmin Kwon;Yoojeong Noh
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.1
    • /
    • pp.10-19
    • /
    • 2023
  • Blast Hardened Bulkhead (BHB) is an important measure that can increase the ship's survivability as well as protect the lives of the crew by mitigating the damage extent caused by an internal explosion in the ship. In particular, both the pressure and the shock impulse should be considered when designing the BHB against reflected shock waves having a high pressure with a short duration. This study proposes a design method for BHB that considers both the pressure and the shock impulse generated during the internal explosion. In addition, analysis and design concepts for accident loads such as explosion, fire, and collision of NORSOK and DNVGL, one of the international design guidelines for the curtain plate type blast hardened bulkhead type applied by the Korean Navy, are utilized. If this method is applied, it is expected that it can be used as a design concept for the pressure as well as the shock impulse of the explosion load of the curtain plate.

Methodology Study of Design Related to Accidental Explosion of Simple Explosive Storage Facility (화약류 간이저장소의 우발적 폭발을 고려한 안전설계 방법 연구)

  • Jung-Gyu, Kim;Seung-Won, Jung;Jun-Ha, Kim;Byung-Hee, Choi
    • Explosives and Blasting
    • /
    • v.40 no.4
    • /
    • pp.1-14
    • /
    • 2022
  • To review the appropriateness of current regulations on the simple explosive storage facility, the effects of internal explosion on the structural stability of the standard storage facility were analyzed by means of both FEM analyses and field experiments. As a result, it was found that the explosion-proof performance of the existing storage structure was not sufficient for 15 kg of emulsion-type explosive. Thus, an alternative method of splitting explosives was tested by conducting sympathetic detonation experiments. This method worked properly as expected, and the proper amount of splitted explosive was determined according to the test results. In addition, a storage structure with open ceiling was found to be very effective because explosion pressure was released so rapidly that the damage of the facility could be reduced significantly. Hence, such a structural pattern was proposed as a new design scheme for simple explosive storage facility.

Experimental Study on the Explosion and Fire Risks of Mobile Phone Batteries (휴대폰 배터리의 폭발 및 화재 위험성에 관한 실험적 연구)

  • Lee, Ho-Sung;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.30 no.4
    • /
    • pp.111-120
    • /
    • 2016
  • This is an experimental study to analyze the explosion and fire hazards of mobile phone batteries. Using the lithium-ion batteries currently used on smart phone as the experiment samples, the experiments were conducted by overcharging, internal and external short circuit, and thermal shock with the potential of explosion and fire caused by careless use or abnormal conditions. The experiment results showed that, in the case of overcharging and external short circuit, there was no explosion and fire hazard in the normal operation of the protection circuit module (PCM), but there were big risks when the PCM faulted conditions were assumed. In the case of the experiments by internal short circuit and thermal shock, such risks varied depending on a battery charge state. In other words, it could be verified that there were low risks of explosion and fire in a full discharge state, but there were high risks in a full charge state. These experiment results suggest that to minimize the explosion and fire hazards of mobile phone batteries, an alarm device is necessary when the PCM fault occurs. In addition, a solid battery case should be made and safety equipment, such as a cooling device to avoid high temperature, is needed.

The Explosion Prevention Method for Electrolytic Motor Start Capacitors using Current Characteristic (통전전류 특성을 이용한 모터 기동용 전해 커패시터 폭발 방지 방법)

  • Kim, Jae-Hyun;Park, Jin-Young;Park, Kwang-Muk;Bang, Sun-Bae;Kim, Yong-Un
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1836-1843
    • /
    • 2017
  • In this paper, we investigated fire cases those are believed to be caused by explosion of a electrolytic motor start capacitor. Using two types of commercially available electrolytic motor start capacitors, capacitor current and the possibility of capacitor explosion were tested. And the ignition possibility of the internal material leaked from a capacitor was also tested. In addition, experiments were conducted to see if the fire could spread when a capacitor was exposed to an external flame. From our test we observed that the current of the electrolytic motor start capacitor rose continuously to a certain level by product, if the capacitor was continuously energized with working voltage, and then the capacitor was exploded. The gas and liquid leaked from the capacitor by the explosion could ignite by an electric arc and an external flame. The capacitor current at explosion was different product by product, but each product had a certain current level at explosion. And the increase rate of the capacitor current until explosion was 24% and 31% for the products used in the experiment. We proposed the capacitor explosion prevention method that cuts off power when the capacitor current rises to a certain threshold level. The proposed method can be used if the current of the applied electrolytic motor start capacitor rises continuously and then the capacitor is exploded at a certain current level when the capacitor is energized continuously.

Comparison on Terror Risk of Large Space Structures and High-rise Buildings in Korea (국내 대공간 건축물과 고층 건축물의 테러위험도 비교)

  • Song, Jin-Young;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.1
    • /
    • pp.105-113
    • /
    • 2016
  • Since the 1980s, the number of large space buildings in Korea has consistently been increasing due to large scale international competitions such as the Olympics and the World Cup, demands for environmental improvement, and development of structural systems. Due to these reasons, this paper conducted a comparative analysis on terrorism risk factors of large space structure and skyscrapers in Korea. The results suggest that the total risk level of high-rise and large space structure was "medium level risk" and that the terrorism risk level for large space structure was as high as that for high-rise buildings. As it relates to the risk levels depending on scenarios, terrorism risks to large space structure were higher than high-rise buildings in the "internal explosion" and "internal intrusion" categories. And the results of analyzing explosion-related scenarios except for CBR suggest that terrorism risks to large space structure were highest when it comes to Internal-Explosive followed by Internal-Intrusion and Explosive-Zone I; and the results showed a regular pattern. On the other hand, in the case of high-rise buildings, terrorism risks were highest in Internal-Explosive followed by Explosive-Zone I and Explosive-Zone II; and the results showed an irregular pattern.

Analysis of Cause of Fire and Explosion in Internal Floating Roof Tank: Focusing on Fire and Explosion Accidents at the OO Oil Pipeline Corporation (내부 부상형 저장탱크(IFRT) 화재·폭발사고 원인 분석: OO송유관공사 저유소 화재·폭발사건을 중심으로)

  • Koo, Chae-Chil;Choi, Jae-Wook
    • Fire Science and Engineering
    • /
    • v.34 no.2
    • /
    • pp.86-93
    • /
    • 2020
  • This study aims to maintain the safety of an outdoor storage tank through the fundamental case analysis of explosion and fire accidents in the storage tank. We consider an accident caused by the explosion of fire inside the tank, as a result of the gradual spreading of the residual fire generated by wind lamps flying off a workplace in the storage tank yard. To determine the cause of the accident, atmospheric diffusion conditions were derived through CCTV image analysis, and the wind direction was analyzed using computational fluid dynamics. Additionally, the amount of oil vapor inside the tank when the floating roof was at the lowest position, and the behavior of the vapor inside the tank when the floating roof was at the highest position were investigated. If the cause of the explosion in the storage tank is identified and the level of the storage tank is maintained below the internal floating roof, dangerous liquid fills the storage tank, and the vapor in the space may stagnate on the internal floating roof. We intend to improve the operation procedure such that the level of the storage tank is not under the Pontoon support, as well as provide measures to prevent flames from entering the storage tank by installing a flame arrester in the open vent of the tank.

Numerical Analysis of Surface Displacement Due to Explosion in Tunnel (터널 내 폭발에 의한 지표 변위에 관한 수치해석적 연구)

  • Park, Hoon
    • Explosives and Blasting
    • /
    • v.38 no.4
    • /
    • pp.26-36
    • /
    • 2020
  • With the increase of expansion and use of the underground space, the possibility of an underground explosion by terrorists is increasing. In this study, after modeling a circular tunnel excavated at a depth of 50m, an explosion load was applied to the inside of the tunnel. As for the explosion load, the explosion load of the maximum explosive amount for six types of vehicle booms proposed by ATF (Bureau of Alcohol, Tobacco, and Firearms) was calculated. For the rock mass around the circular tunnel, three types of rock grades were selected according to the support pattern suggested in the domestic tunnel design. Nonlinear dynamic analysis was performed to evaluate the influence of the ground structure by examining the surface displacement using the explosion load and rock mass characteristics as parameters. As a result of the analysis, for grade 1 rock, the influence on the uplift of the surface should be considered, and for grade 2 and 3 rocks, the influence on a differential settlement should be considered. In particular, for grade 3 rocks, detailed analysis is required for ground-structure interaction within 40m. Also, it is considered that the influence of Young's modulus is the main factor for the surface displacement.

Study on Bursting Prediction of Rectangular Battery Case with V-Notch (직사각형 전지 케이스의 V-notch부 터짐 예측에 관한 연구)

  • Kim, S.M.;Song, W.J.;Ku, T.W.;Kim, J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.1
    • /
    • pp.59-66
    • /
    • 2009
  • In this study, V-notch part has been considered as one of safety components in rectangular cup used for mobile device. This kind of safety component in rectangular cup with the V-notch part, which controls adequately the increased internal pressure in the rectangular cup, plays an important role to prevent the explosion from the excessive internal pressure. The protecting mechanism on the mobile device against the explosion is that a series of fracture on the V-notch part at the critical internal pressure level occurs. Therefore, it is very crucial to estimate accurately the working pressure range of the safety device. Relationship between the working internal pressure and fracture phenomenon at V-Notch part was investigated through numerical analysis using ductile fracture criteria. Integral value, I, of the used ductile fracture criteria was calculated from effective stress and strain, and then the bursting pressure of the V-notch part was extracted. Comparisons between the estimated and experimental results show that this systematic approach to predict bursting pressure using the ductile fracture criteria gives fairly good agreements.