• Title/Summary/Keyword: Internal boundary

Search Result 652, Processing Time 0.034 seconds

A Study of Internal Ultrastructure on the RGP Contact Lens (RGP 콘택트 렌즈의 내부 미세구조에 대한 연구)

  • Kim, Douk Hoon
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.6 no.1
    • /
    • pp.55-58
    • /
    • 2001
  • The rigid gas permeable(RGP) contact lens has nearly side effect on the cornea. So that, this lens has used the clinical reflective correction of the eye. This study have used several methods for research the fine internal structure on the RGP contact lens by scanning electron microscopy. The results have indicated that the postfixation of 1% $OsO_4$ and tannic acid is responsible for a fine structure in the internal plane of RGP contact lens. These internal surface of contact lens appeared the several shape of the hole of the stereo shape form with arrangement of round form. But, on the contact lens with non-postfixation, the stereo shape have not present and the boundary of the vesicle have not clear. Maybe, these results suggest that the fixation methods have effect on the morphological characters of materials on the RGP contact lens.

  • PDF

Bending and free vibration analysis of laminated piezoelectric composite plates

  • Zhang, Pengchong;Qi, Chengzhi;Fang, Hongyuan;Sun, Xu
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.747-769
    • /
    • 2020
  • This paper provides a semi-analytical approach to investigate the variations of 3D displacement components, electric potential, stresses, electric displacements and transverse vibration frequencies in laminated piezoelectric composite plates based on the scaled boundary finite element method (SBFEM) and the precise integration algorithm (PIA). The proposed approach can analyze the static and dynamic responses of multilayered piezoelectric plates with any number of laminae, various geometrical shapes, boundary conditions, thickness-to-length ratios and stacking sequences. Only a longitudinal surface of the plate is discretized into 2D elements, which helps to improve the computational efficiency. Comparing with plate theories and other numerical methods, only three displacement components and the electric potential are set as the basic unknown variables and can be represented analytically through the transverse direction. The whole derivation is built upon the three dimensional key equations of elasticity for the piezoelectric materials and no assumptions on the plate kinematics have been taken. By virtue of the equilibrium equations, the constitutive relations and the introduced set of scaled boundary coordinates, three-dimensional governing partial differential equations are converted into the second order ordinary differential matrix equation. Furthermore, aided by the introduced internal nodal force, a first order ordinary differential equation is obtained with its general solution in the form of a matrix exponent. To further improve the accuracy of the matrix exponent in the SBFEM, the PIA is employed to make sure any desired accuracy of the mechanical and electric variables. By virtue of the kinetic energy technique, the global mass matrix of the composite plates constituted by piezoelectric laminae is constructed for the first time based on the SBFEM. Finally, comparisons with the exact solutions and available results are made to confirm the accuracy and effectiveness of the developed methodology. What's more, the effect of boundary conditions, thickness-to-length ratios and stacking sequences of laminae on the distributions of natural frequencies, mechanical and electric fields in laminated piezoelectric composite plates is evaluated.

Business Information Visuals and User Learning : A Case of Companies Listed on the Stock Exchange of Thailand

  • Tanlamai, Uthai;Tangsiri, Kittisak
    • Journal of Information Technology Applications and Management
    • /
    • v.17 no.1
    • /
    • pp.11-33
    • /
    • 2010
  • The majority of graphs and visuals made publicly available by Thai listed companies tend to be disjointed and minimal. Only a little over fifty percent of the total 478 companies included graphic representations of their business operations and performance in the form of two or three dimensional spreadsheet based graphs in their annual reports, investor relations documents, websites and so on. For novice users, these visual representations are unlikely to give the big picture of what is the company's financial position and performance. Neither will they tell where the company stands in its own operating environment. The existing graphics and visuals, in very rare cases, can provide a sense of the company's future outlook. For boundary users such as audit committees whose duty is to promote good governance through transparency and disclosure, preliminary interview results show that there is some doubt as to whether the inclusion of big-picture visuals can really be of use to minority shareholders. These boundary users expect to see more insightful visuals beyond those produced by traditional spreadsheets which will enable them to learn to cope with the on-going turbulence in today's business environment more quickly. However, the debate is still going on as to where to draw the line between internal or external reporting visuals.

  • PDF

Low-frequency Noise Reduction in an Enclosure by using a Helmholtz Resonator Array (헬름홀츠 공명기 배열을 이용한 인클로저 내부의 저주파 소음 저감)

  • Park, Soon-Hong;Seo, Sang-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.8
    • /
    • pp.756-762
    • /
    • 2012
  • A method of the low-frequency noise reduction in an enclosure by using an array of Helmholtz resonator is presented. An integral form of equation, which represents the acoustical coupling between the internal sound field and the resonator array, is formulated so that the boundary element method can be applied to solve the coupling problem. It is shown that the resonator array on the surface of the enclosure can be regarded as impedance patches on the boundary element. Experiments on a simple enclosure acoustically coupled with an array of resonators are conducted to verify the method. The predicted noise reduction by the boundary element method shows good agreement with the measured one. The effects of the resistance of resonators as well as the number of resonators on the noise reduction are demonstrated. As a practical example, the presented method is applied to the payload fairing of a space launcher with resonator arrays. It is demonstrated that the resistance of resonators affects significantly the required number of resonators to achieve a desired noise reduction.

Development of a flat shell element by using the hybrid Trefftz plane element with drilling D.O.F. and the DKMQ element (면내 회전 자유도가 추가된 hybrid Trefftz 평면 요소와 DKMQ 요소를 이용한 4 절점 평면 셸 요소의 개발)

  • 최누리;추연석;이승규;이병채
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.855-859
    • /
    • 2004
  • We develop a new four-node flat shell element which is accurate, efficient, and suitable to be used on general purpose. The new element has a hybrid Trefftz element with drilling degrees of freedom as a membrane part. We define the two independent displacement field: the internal displacement field that satisfies governing equations in the domain a priori and the boundary displacement field that is usually used as a conventional finite element method. The hybrid Trefftz variational formulation connects these two displacement fields on the boundary of the domain. To add drilling degrees of freedom, we introduce the Allman's quadratic displacement field to the boundary displacement field. As a result, our flat shell element has 6 degrees of freedom per a node. We also use the well-known DKMQ plate bending element for the plate part of the proposed element. The DKMQ element satisfies Mindlin-Reissner‘s plate theory along the edge of the element and gives proper behavior regardless of the thickness. A series of numerical experiments shows that the performance of the new element such as accuracy, rate of convergence, robustness to mesh quality, and so on.

  • PDF

Performance Analysis of Various Forward Solvers in Electrical Impedance Tomography (전기 임피던스 단층촬영 기법에서 여러 정문제 해법들에 대한 성능 비교분석)

  • Kim, Bong Seok;Kim, Kyung Youn
    • Journal of IKEEE
    • /
    • v.19 no.3
    • /
    • pp.407-414
    • /
    • 2015
  • Electrical impedance tomography is an imaging technique to reconstruct the internal conductivity distribution based on applied small currents and measured voltages through an array of electrodes attached on the boundary of a domain of interest. In this paper, an analytical solver with complete electrode model is derived and the analytical voltage data are calculated. Moreover, the voltage data are also computed with existing numerical solvers such as finite element method and boundary element method. The forward solutions using homogeneous and inhomogeneous conditions are compared with phantom experiments through the root mean square errors.

Histological Characteristics of Normal and Inferior Parts in Korean Red Ginseng (정상홍삼과 불량홍삼의 조직학적 특성)

  • 이종원;김천석;채순용;양재원;도재호
    • Journal of Ginseng Research
    • /
    • v.25 no.2
    • /
    • pp.82-88
    • /
    • 2001
  • This study was carried out to investigate a point of difference between normal and inferior Korean red ginseng (Naeback red ginseng = red ginseng with white part of clear boundary in phloem and/or xylem of ginseng body, saengnaeback red ginseng red ginseng with white part of indistinct boundary). White part with clear or indistinct boundary in center of ginseng body was observed in inferior red ginseng (naeback and saengnaeback red ginseng), and the differences in the internal color intensity was also found with naked eye. In hunter color values of normal and inferior parts of red ginseng in accordance with particle size, L value was increased with a diminishment in particle size, while a and b value were decreased. Absorbance at visible spectrum did not differ from water and 70% ethanol extract from normal and inferior parts of red ginseng, but absorbance in UV spectrum of extract from naeback part showed higher than those of normal and saengnaeback part. In comparison of intrastructure by electron microscope, the horizontal and vertical section of cortex and pith layer from normal part showed the very dense state, but small holes were found in naeback part of red ginseng by naked eye and electron microscope. The specific surface area of normal, naeback and saengnaeback part appeared 3.02, 3.33 and 6.55 ㎡/g, respectively. From above results, we consider saengnaeback red ginseng is red ginseng in the intermediate process which normal red ginseng changes to naeback red ginseng.

  • PDF

Control of Outmost Poloidal Flux Surface of Tokamak Plasma in RTP (RTP에서 토카막 플라즈마의 폴로이달 등자속면 제어)

  • Lee, Kwang-Won;Oh, Byung-Hoon
    • Nuclear Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.136-147
    • /
    • 1993
  • The paper describes : ⅰ) Mathematical modeling of poloidal flux to define and calculate the tokamak plasma position based on a property of the plasma boundary which is always a flux surface. Controlling the plasma boundary position is therefore equivalent to equalizing the flux value on several points belonging to a curve tangent to the limiter. ⅱ) Experimental method for determining the outmost poloidal isoflux surface by a linear combination of measurements of magnetic fluxes, fields and field gradients, without requiring knowledge of internal plasma parameters for the feedback control, i.e., with neither corrections for variation in the poloidal beta and the plasma current distribution, nor compensations for the induced currents in the vacuum vessel. ⅲ) Feedback control algorithm for the regulation of plasma boundary position and its electronics hardware based on the PID control theory. ⅳ) Experimental results obtained from the RTP tokamak experiments using the present plasma control system.

  • PDF

Natural vibrations and hydroelastic stability of laminated composite circular cylindrical shells

  • Bochkareva, Sergey A.;Lekomtsev, Sergey V.
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.769-780
    • /
    • 2022
  • This paper studies the dynamic behavior of laminated composite circular cylindrical shells interacting with a fluid. The mathematical formulation of the dynamic problem for an elastic body is developed based on the variational principle of virtual displacements and the relations of linear elasticity theory. The behavior of an ideal compressible fluid is described by the potential theory, the equations of which together with boundary conditions are transformed to a weak form. The hydrodynamic pressure exerted by the fluid on the internal surface of the shell is calculated according to the linearized Bernoulli equation. The numerical implementation of the mathematical formulation has been done using the semi-analytical finite element method. The influence of the ply angle and lay-up configurations of laminated composites on the natural vibration frequencies and the hydroelastic stability boundary have been analyzed for shells with different geometrical dimensions and under different kinematic boundary conditions set at their edges. It has been found that the optimal value of the ply angle depends on the level of filling of the shell with a fluid. The obtained results support the view that by choosing the optimal configuration of the layered composite material it is possible to change upwards or downwards the frequency and mode shape, as well as the critical velocity for stability loss over a wide range.

Calculation of dynamic stress intensity factors and T-stress using an improved SBFEM

  • Tian, Xinran;Du, Chengbin;Dai, Shangqiu;Chen, Denghong
    • Structural Engineering and Mechanics
    • /
    • v.66 no.5
    • /
    • pp.649-663
    • /
    • 2018
  • The scaled boundary finite element method is extended to evaluate the dynamic stress intensity factors and T-stress with a numerical procedure based on the improved continued-fraction. The improved continued-fraction approach for the dynamic stiffness matrix is introduced to represent the inertial effect at high frequencies, which leads to numerically better conditioned matrices. After separating the singular stress term from other high order terms, the internal displacements can be obtained by numerical integration and no mesh refinement is needed around the crack tip. The condition numbers of coefficient matrix of the improved method are much smaller than that of the original method, which shows that the improved algorithm can obtain well-conditioned coefficient matrices, and the efficiency of the solution process and its stability can be significantly improved. Several numerical examples are presented to demonstrate the increased robustness and efficiency of the proposed method in both homogeneous and bimaterial crack problems.