• Title/Summary/Keyword: Internal Model Control(IMC)

Search Result 33, Processing Time 0.029 seconds

Internal Model Control for Unstable Overactuated Systems with Time Delays

  • Mahmoud, Ines;Saidi, Imen
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.64-69
    • /
    • 2021
  • In this paper, we have proposed a new internal model control structure (IMC). It is aimed at unstable overactuated multivariable systems whose transfer matrices are singular and unstable. The model inversion problem is essential to understand this structure. Indeed, the precision between the output of the process and the setpoint is linked to the quality of the inversion. This property is preserved in the presence of an additive disturbance at the output. This inversion approach proposed in this article can be applied to multivariable systems with no minimum phase or minimum phase shift with or without delays in their transfer matrices. It is proven by an example of simulation through which we have shown its good performance as a guarantee of stability, precision as well as rapidity of system responses despite the presence of external disturbances and we have tested this control structure in the frequency domain hence the robustness of the IMC.

Model Identification and Design of Optimized IMC-Cascade Controller (모델 동정과 최적의 IMC-Cascade 제어기 설계)

  • Cho, Joon-Ho;Cho, Hyun-Seob;Hwang, Hyung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.6027-6033
    • /
    • 2012
  • In this paper, we proposed to model identification in frequency domain using relay feedback and Design of internal model controller(IMC) with Cascade controller. The parameters of controller in the inner loop are determined to minimize the integral of time multiplied by the absolute value of error (ITAE) value of performance Index. The controller of outer loop and parameters of IMC-PID controller can be obtain using identified model. The model identification is considered that it is the transient response and the steady-state response through the use of nyquist curve. Simulation examples are given to show the better performance of the proposed method than conventional methods.

Auto - tuning of PID Controllers with IMC Structure (IMC 구조를 갖는 PID 제어기의 자동 동조)

  • Cho, Joon-Ho;Hwang, Hyung-Soo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.3
    • /
    • pp.8-14
    • /
    • 2009
  • In this paper, it is proposed that the design of the PID controller with the internal model control structure for improved performance. Internal model was identification that is second-order plus dead time structure using final-value theorem and genetic algorithm The parameters of Controller are determined to minimize IAE(Integral of the Absolute value of the Error) and ITAE(Integral of the Time multiplied by the Absolute value of the Error) of performance index by internal model and numerical method. Simulation examples are given to show the better performance of the proposed method than conventional methods.

IMC design for nonlinear plants using multiple models, controllers, and switching (다중 모델, 제어기, 스위칭을 이용한 비선형 플랜트의 IMC 제어기 설계)

  • 오원근;서병설
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.11
    • /
    • pp.22-30
    • /
    • 1996
  • In this paper, the properties and the design procedures of the internal model control (IMC) structures are discussed and a new nonlinear IMC(NIMC) strategy is proposed. The IMC controllers are simply inverse controller in principle but the development of a NIMC poses difficulties due to the inherent complexity of nonlinear systems. Existing design mehtods are a few and not easy to implement. The proposed approach is using multiple linear models, linear IMC controllers, and swiching scheme instead of using nonlinear model/controller. The advantages of the new approach are that we can use linear IMC mehtod which are now well estabilished and need not global nonlinear models.

  • PDF

Robust Trajectory Control of Robot Manipulators Using Time Delay Estimation and Internal Model Concept (로봇 매니퓰레이터를 위한 시간지연추정과 내부모델개념을 결합한 강인제어기에 관한 연구)

  • Cho Geon Rae;Chang Pyung-Hun;Jung Je Hyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1075-1086
    • /
    • 2004
  • In this paper, Time Delay Control(TDC) for robot manipulators is analyzed and its problems are founded. In order to remedy the problems, the enhanced controller is proposed and analyzed. The effect of friction associated with TDC is reported and its cause is presented. Through the analysis, simulation and experiment, it is shown that the friction effect causes serious degradation in control performance and that it is a result of the error of Time Delay Estimation(TDE) in TDC. In order to remedy the problems, TDC combined with Internal Model Control(IMC) concept is proposed. The proposed compensator is effective enough to handle the bad effect of friction, and is so simple and efficient as to match positive attribute of TDC. The simulation and experimental results show the effectiveness of proposed controller against the friction of the robot manipulators.

Tip Position Command Tracking of a Flexible Beam Using Active Vibration Control (능동진동제어를 이용한 유연보의 끝단위치 명령추종연구)

  • Lee, Young-Sup;Elliott, Stephen-J
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.643-648
    • /
    • 2003
  • The problem considered in this paper is that the tip position of a flexible cantilever beam is controlled to follow a command signal, using a pair of piezoelectric actuators at the clamped end. The beam is lightly damped and so the natural transient response is rather long, and also since the sensor and actuator are not collocated, the plant response is non-minimum phase. Two control strategies were investigated. The first involved conventional PID control in which the feedback gains were adjusted to give the fastest closed-loop response to a step input. The second control strategy was based on an internal model control (IMC) architecture. The control filter in the IMC controller was a digital FIR device designed to minimize the expectation of the mean square tracking error. The IMC controller designed fur the beam was found to have very much reduced settling times to a step input compared with those of the PID controller.

  • PDF

Design of a robust controller for nonminimum phase system with structured uncertainty (구조적 불확실성을 갖는 비최소위상계의 강인한 제어기 설계)

  • 김신구;서광식;김영철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.422-425
    • /
    • 1997
  • We consider the robust control problem for nonminimum phase(NMP) systems with parametric uncertainty which appear often in aircraft and missile control. First, a new method that makes such an uncertain NMP system to be factored as a interval minimum phase(MP) transfer function and a time delay term in the Pade approximation form has been presented. The controller to be proposed consists of a compensator $C_{Q}$(s) with Smith predictor in the internal model control(IMC) structure, so that it can have good robustness and performance against the structured uncertainty and the time delay behaviour due to NMP plant the $C_{Q}$(s) is designed on the MP model by using QFT. The stability and performance of overall system has been evaluated by the generalized Kharitonov theorem.rem.

  • PDF

A Shared Compliant Control Scheme based on Internal Model Control

  • Ahn, Sung-Ho;Jin, Jae-Hyun;Park, Byung-Suk;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1571-1574
    • /
    • 2003
  • A shared compliant control scheme based on IMC is proposed for the position-force force reflecting control system. The controller of the slave manipulator is designed by IMC method for the open loop unstable plant. The compliant control is implemented by first order low pass filter. In the proposed scheme, the slave manipulator well tracks the position of the master manipulator in free space and the compliance of the slave manipulator is autonomously controlled in contact condition. The simulation results show that the excellence of the proposed controller.

  • PDF

Neural Network Based Disturbance Canceler with Feedback Error Learning for Nonholonomic Mobile Robots

  • Izumi, Kiyotaka;Syam, Rafiuddin;Watanabe, Keigo;Kiguchi, Kazuo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.443-446
    • /
    • 2003
  • Conventional disturbance rejection methods have to derive the inverse model of a system. However, the inverse model of n nonholonomic system is not unique, because an inverse it changes depending on initial conditions and desired values. A kind of internal model control (IMC) using feedback error learning is discussed for the motion control of nonholonomic mobile robots in this paper, The present method is different from a conventional IMC whose control system consists of an inverse model, a direct model and a filter. The present disturbance rejection method need not use a direct model, where the remaining two elements are composed of the same inverse model based on neural networks.

  • PDF

Distributed Control of DC Servo Motor on LonWorks-IP Virtual Device Network for Predictive and Preventive Maintenance (LonWorks-IP 가상 디바이스 네트워크상에서 예지 및 예방보전을 위한 DC 서보모터의 분산제어)

  • Song, Ki-Won
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.4 s.76
    • /
    • pp.25-32
    • /
    • 2006
  • LonWorks over IP(LonWorks-IP) virtual device network(VDN) is an integrated form of LonWorks device network and IP data network. In especially real-time distributed servo applications on the factory floor, timely response is essential for predictive and preventive maintenance. The time delay in servo control on LonWorks-IP based VDN has highly stochastic nature. LonWorks-IP based VDN induced transmission delay deteriorates the performance and stability of the real-time distributed control system and can't give an effective preventive and predictive maintenance. In order to guarantee the stability and performance of the system, and give an effective preventive and predictive maintenance, LonWorks-IP based VDN induced time-varying uncertain time delay needs to be predicted and compensated. In this paper new Pill control scheme based on Smith predictor, disturbance observer and band pass filter is proposed and tested through computer simulation about position control of DC servo motor. It is shown that how can the proposed control scheme be designed to minimize the effects of uncertain varying time delay and model uncertainties. The validity of the proposed control scheme is compared and demonstrated with the comparison of internal model controllers(IMC) based on Smith predictor with and without disturbance observer.